945 resultados para Oregon. State Board of Health
Resumo:
The properties of nuclei belonging to the alpha-decay chain of superheavy element (295)118 have been studied in the framework of axially deformed relativistic mean field (RMF) theory with the parameter set of NL-Z2 in the blocked BCS approximation. Some ground state properties such as binding energies, deformations, and alpha-decay energies Q(alpha) have been obtained and agree well with those from finite-range droplet model (FRDM). The single-particle spectra of nuclei in (295)118 alpha-decay chain show that the shell gaps present obviously nucleon number dependence. The root-mean-square (rms) radii of proton, neutron and matter distributions change slowly from (283)112 to (295)118 but dramatically from (279)110 to (283)112, which may be due to the subshell closure at Z = 110 in (279)110. The alpha-decay half-lives in (295)118 decay chain are evaluated by employing the cluster model and the generalized liquid drop model (GLDM), and the overall agreement is found when they are compared with the known experimental data. The alpha-decay lifetimes obtained from the cluster model are slightly larger than those of GLDM ones. Finally, we predict the alpha-decay half-lives of Z = 118, 116, 114, 112 isotopes using the cluster model and GLDM, which also indicate these two models can corroborate each other in studies on superheavy nuclei. The results from GLDM are always lower than those obtained from the cluster model.
Resumo:
In this review, a few examples of state-to-state dynamics studies of both unimolecular and bimolecular reactions using the H-atom Rydberg tagging TOF technique were presented. From the H2O photodissociation at 157 nm, a direction dissociation example is provided, while photodissociation of H2O at 121.6 has provided an excellent dynamical case of complicated, yet direct dissociation process through conical intersections. The studies of the O(D-1) + H-2 --> OH+H reaction has also been reviewed here. A prototype example of state-to-state dynamics of pure insertion chemical reaction is provided. Effect of the reagent rotational excitation and the isotope effect on the dynamics of this reaction have also been investigated. The detailed mechanism for abstraction channel in this reaction has also been closely studied. The experimental investigations of the simplest chemical reaction, the H-3 system, have also been described here. Through extensive collaborations between theory and experiment, the mechanism for forward scattering product at high collision energies for the H+HD reaction was clarified, which is attributed to a slow down mechanism on the top of a quantized barrier transition state. Oscillations in the product quantum state resolved different cross sections have also been observed in the H+D-2 reaction, and were attributed to the interference of adiabatic transition state pathways from detailed theoretical analysis. The results reviewed here clearly show the significant advances we have made in the studies of the state-to-state molecular reaction dynamics.
Resumo:
The angular momentum polarization and rotational state distributions of the H-2 and HCl products from the H + HCl reaction are calculated at a relative translational energy of 1.6 eV by using quasiclassical trajectories on two potential energy surfaces, one from G3 surface [T.C. Allison et al., J. Phys. Chem. 100 (1996) 13575], and the other from BW2 surface [W. Bian, H.-J. Werner, J. Chem. Phys. 112 (2000) 220]. Product rotational distributions obtained on the G3 potential energy surface (PES) are much closer to the experimental results (P.M. Aker et al., J. Chem. Phys. 90 (1989) 4795; J. Chem. Phys. 90 (1989) 4809) than the distributions calculated on the BW2 PES. The distributions of P(phi(r)) for the H-2 and HCl products obtained on the G3 PES are similar, whereas the rotational alignment effect of the H-2 product is stronger than that of the HCl product. In contrast to the polarization distributions obtained on the G3 PES, the rotational alignment effect of the two products calculated on the BW2 PES is similar. However, the abstraction reaction is dominated by out-of-plane mechanisms, while the exchange reaction is dominated by in-plane mechanisms. The significant difference of the product rotational polarization obtained on the G3 and BW2 PESs implies that the studies of the dynamical stereochemistry can provide a sensitive test for the accuracy of the PES. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Electrochemiluminescence (ECL) of tris(2,2'-bipyridyl) ruthenium [Ru(bpy)(3)(2+)] has received considerable attention. By immobilizing Ru(bpy)(3)(2+) on an e electrode surface, solid-state ECL provides several advantages over solution-phase ECL, such as reducing consumption of expensive reagent, simplifying experimental design and enhancing the ECL signal.This review presents the state of the art in solid-state ECL of Ru(bpy)(3)(2+).
Resumo:
Tris(2,2'-bipyridine)ruthenium(II) ((Ru(bpy)(3)](2+)) is one of the most extensively studied and used electrochemiluminescent (ECL) compounds owing to its superior properties, which include high sensitivity and stability under moderate conditions in aqueous solution. In this paper we present a simple method for the preparation of [Ru(bpy)(3)](2+)-containing microstructures based on electrostatic assembly The formation of such micro-structures occurs in a single process by direct mixing of aqueous solutions of [Ru(bpy)(3)]Cl-2 and K-3[Fe(CN)(6)] at room temperature. The electrostatic interactions between [Ru(bpy)(3)]Cl-2 cations and [Fe(CN)(6)](3-) anions cause them to assemble into the resulting microstructures. Both the molar ratio and concentration of reactants were found to have strong influences on the formation of these microstructures. Most importantly, the resulting [Ru(bpy)(3)](2+)- containing microstructures exhibit excellent ECL behavior and, therefore, hold great promise for solid-state ECL detection in capillary electrophoresis (CE) or CE microchips.
Resumo:
TiO2 nanoparticle film catalysts with different thicknesses were prepared by plasma-enhanced chemical vapor deposition(PECVD) method and the surfaces were subsequently treated by TiCl4 or O-2 plasma. Two kinds of TiO2 films with different surface properties were obtained. Their surface microstructures and energy levels of surface states were tested by AFM, XRD, SPS, The photocatalytic activities of the catalysts were determined via photodegradation experiments of phenol. The results demonstrated that photocatalytic activities of samples whose surface was treated by O-2 plasma were greater than those treated by TiCl4 plasma. Moreover, photodegradation ratio of phenol during the first hour catalyzed by 0. 17 mu m thickness TiO2 nanoparticle film was greater than other samples. Especially, the difference of photocatalytic activities of TiO2 nanoparticle films treated by TiCl4 or O-2 plasma was respectively explained by energy band theory.
Resumo:
On the basis of the spin and valence state equilibria and superexchange interaction of the various cobalt ions in LaCoO3, an approximate semiempirical formula has been proposed and used to calculate magnetic susceptibilities of LaCoO3 over a wide temperature range (100-1200 K). The results indicate that there are thermodynamic equilibria between the low spin state Co(III) (t2g6e(g)0) ion, the high spin state Co3+ (t2g4e(g)2) ion, the Co(II) (t2g6e(g)1) ion and the Co(IV) (t2g5e(g)0) ion in LaCoO3. The energy difference between the low spin state Co(III) and the high spin state Co3+ is about 0.006 eV. The content of the low spin state Co(III) ion is predominant in LaCoO3 and the content of the high spin state Co3+ ion varies with temperature, reaching a maximum at about 350 K, then decreasing gradually with increasing temperature. At low temperature the contents of the Co(II) ion and the Co(IV) ion in LaCoO3 are negligible, while above 200 K the contents of both the Co(II) ion and the Co(IV) ion increase with increasing temperature; however, the content of the Co(II) ion always is larger than that of the Co(IV) ion at any temperature. These calculated results are in good agreement with experimental results of the Mossbauer effect, magnetic susceptibility and electrical conductivity of LaCoO3.
Resumo:
This paper describes the electrochemical oxidation and reduction of electroactive solutes which are dissolved in and diffusing through the polymer electrolyte solvent, poly(ethylene oxide) (PEO). The characteristics of electrochemical reactions in polymeric solutions are discussed, including how rigid solvent environments affect mass transport rates, and the transport phenomenon of electroactive species in PEO with bathing gases is explained by using the voltammetric theory of ultramicroelectrodes. The possibility that the microelectrode coated with PEO film can be used as a gas sensor has been discussed.
Resumo:
Urquhart, C., Spink, S., Thomas, R. & Durbin, J. (2005). Systematic assessment of the training needs of health library staff. Library and Information Research, 29(93), 35-42. Sponsorship: National Library for Health (NLH)