970 resultados para Orbital robotics
Resumo:
Robots currently recognise and use objects through algorithms that are hand-coded or specifically trained. Such robots can operate in known, structured environments but cannot learn to recognise or use novel objects as they appear. This thesis demonstrates that a robot can develop meaningful object representations by learning the fundamental relationship between action and change in sensory state; the robot learns sensorimotor coordination. Methods based on Markov Decision Processes are experimentally validated on a mobile robot capable of gripping objects, and it is found that object recognition and manipulation can be learnt as an emergent property of sensorimotor coordination.
Resumo:
The cation\[Si,C,O](+) has been generated by 1) the electron ionisation (EI) of tetramethoxysilane and 2) chemical ionisation (CI) of a mixture of silane and carbon monoxide. Collisional activation (CA) experiments performed for mass-selected \[Si,C,O](+), generated by using both methods, indicate that the structure is not inserted OSiC+; however, a definitive structural assignment as Si+-CO, Si+-OC or some cyclic variant is impossible based on these results alone. Neutralisation-reionisation (+NR+) experiments for EI-generated \[Si,C,O](+) reveal a small peak corresponding to SiC+, but no detectable SiO+ signal, and thus establishes the existence of the Si+-CO isomer. CCSD(T)//B3LYP calculations employing a triple-zeta basis set have been used to explore the doublet and quartet potential-energy surfaces of the cation, as well as some important neutral states The results suggest that both Si+-CO and Si+ - OC isomers are feasible; however, the global minimum is (2)Pi SiCO+. Isomeric (2)Pi SiOC+ is 12.1 kcal mol(-1) less stable than (2)Pi SiCO+, and all quartet isomers are much higher in energy. The corresponding neutrals Si-CO and Si-OC are also feasible, but the lowest energy Si - OC isomer ((3)A") is bound by only 1.5 kcal mol(-1). We attribute most, if nor all, of the recovery signal in the +NR' experiment to SiCO+ survivor ions. The nature of the bonding in the lowest energy isomers of Si+ -(CO,OC) is interpreted with the aid of natural bond order analyses, and the ground stale bonding of SiCO+ is discussed in relation to classical analogues such as metal carbonyls and ketenes.
Resumo:
This paper presents a method to enable a mobile robot working in non-stationary environments to plan its path and localize within multiple map hypotheses simultaneously. The maps are generated using a long-term and short-term memory mechanism that ensures only persistent configurations in the environment are selected to create the maps. In order to evaluate the proposed method, experimentation is conducted in an office environment. Compared to navigation systems that use only one map, our system produces superior path planning and navigation in a non-stationary environment where paths can be blocked periodically, a common scenario which poses significant challenges for typical planners.
Resumo:
Suspended loads on UAVs can provide significant benefits to several applications in agriculture, law enforcement and construction. The load impact on the underlying system dynamics should not be neglected as significant feedback forces may be induced on the vehicle during certain flight manoeuvres. Much research has focused on standard multi-rotor position and attitude control with and without a slung load. However, predictive control schemes, such as Nonlinear Model Predictive Control (NMPC), have not yet been fully explored. To this end, we present software and flight system architecture to test controller for safe and precise operation of multi-rotors with heavy slung load in three dimensions.
Resumo:
This paper presents Sequence Matching Across Route Traversals (SMART); a generally applicable sequence-based place recognition algorithm. SMART provides invariance to changes in illumination and vehicle speed while also providing moderate pose invariance and robustness to environmental aliasing. We evaluate SMART on vehicles travelling at highly variable speeds in two challenging environments; firstly, on an all-terrain vehicle in an off-road, forest track and secondly, using a passenger car traversing an urban environment across day and night. We provide comparative results to the current state-of-the-art SeqSLAM algorithm and investigate the effects of altering SMART’s image matching parameters. Additionally, we conduct an extensive study of the relationship between image sequence length and SMART’s matching performance. Our results show viable place recognition performance in both environments with short 10-metre sequences, and up to 96% recall at 100% precision across extreme day-night cycles when longer image sequences are used.
Resumo:
Современный этап развития комплексов автоматического управления и навигации малогабаритными БЛА многократного применения предъявляет высокие требования к автономности, точности и миниатюрности данных систем. Противоречивость требований диктует использование функционального и алгоритмического объединения нескольких разнотипных источников навигационной информации в едином вычислительном процессе на основе методов оптимальной фильтрации. Получили широкое развитие бесплатформенные инерциальные навигационные системы (БИНС) на основе комплексирования данных микромеханических датчиков инерциальной информации и датчиков параметров движения в воздушном потоке с данными спутниковых навигационных систем (СНС). Однако в современных условиях такой подход не в полной мере реализует требования к помехозащищённости, автономности и точности получаемой навигационной информации. Одновременно с этим достигли значительного прогресса навигационные системы, использующие принципы корреляционно экстремальной навигации по оптическим ориентирам и цифровым картам местности. Предлагается схема построения автономной автоматической навигационной системы (АНС) для БЛА многоразового применения на основе объединения алгоритмов БИНС, спутниковой навигационной системы и оптической навигационной системы. The modern stage of automatic control and guidance systems development for small unmanned aerial vehicles (UAV) is determined by advanced requirements for autonomy, accuracy and size of the systems. The contradictory of the requirements dictates novel functional and algorithmic tight coupling of several different onboard sensors into one computational process, which is based on methods of optimal filtering. Nowadays, data fusion of micro-electro mechanical sensors of inertial measurement units, barometric pressure sensors, and signals of global navigation satellite systems (GNSS) receivers is widely used in numerous strap down inertial navigation systems (INS). However, the systems do not fully comply with such requirements as jamming immunity, fault tolerance, autonomy, and accuracy of navigation. At the same time, the significant progress has been recently demonstrated by the navigation systems, which use the correlation extremal principle applied for optical data flow and digital maps. This article proposes a new architecture of automatic navigation management system (ANMS) for small UAV, which combines algorithms of strap down INS, satellite navigation and optical navigation system.
Resumo:
This paper presents a novel place recognition algorithm inspired by the recent discovery of overlapping and multi-scale spatial maps in the rodent brain. We mimic this hierarchical framework by training arrays of Support Vector Machines to recognize places at multiple spatial scales. Place match hypotheses are then cross-validated across all spatial scales, a process which combines the spatial specificity of the finest spatial map with the consensus provided by broader mapping scales. Experiments on three real-world datasets including a large robotics benchmark demonstrate that mapping over multiple scales uniformly improves place recognition performance over a single scale approach without sacrificing localization accuracy. We present analysis that illustrates how matching over multiple scales leads to better place recognition performance and discuss several promising areas for future investigation.
Resumo:
We introduce a new mechanism for the propulsion and separation by chirality of small ferromagnetic particles suspended in a liquid. Under the action of a uniform dc magnetic field H and an ac electric field E isomers with opposite chirality move in opposite directions. Such a mechanism could have a significant impact on a wide range of emerging technologies. The component of the chiral velocity that is odd in H is found to be proportional to the intrinsic orbital and spin angular momentum of the magnetized electrons. This effect arises because a ferromagnetic particle responds to the applied torque as a small gyroscope. © 2012 American Physical Society.
Resumo:
This paper describes a novel vision based texture tracking method to guide autonomous vehicles in agricultural fields where the crop rows are challenging to detect. Existing methods require sufficient visual difference between the crop and soil for segmentation, or explicit knowledge of the structure of the crop rows. This method works by extracting and tracking the direction and lateral offset of the dominant parallel texture in a simulated overhead view of the scene and hence abstracts away crop-specific details such as colour, spacing and periodicity. The results demonstrate that the method is able to track crop rows across fields with extremely varied appearance during day and night. We demonstrate this method can autonomously guide a robot along the crop rows.
Resumo:
This paper is concerned with how a localised and energy-constrained robot can maximise its time in the field by taking paths and tours that minimise its energy expenditure. A significant component of a robot's energy is expended on mobility and is a function of terrain traversability. We estimate traversability online from data sensed by the robot as it moves, and use this to generate maps, explore and ultimately converge on minimum energy tours of the environment. We provide results of detailed simulations and parameter studies that show the efficacy of this approach for a robot moving over terrain with unknown traversability as well as a number of a priori unknown hard obstacles.
Resumo:
We propose and evaluate a novel methodology to identify the rolling shutter parameters of a real camera. We also present a model for the geometric distortion introduced when a moving camera with a rolling shutter views a scene. Unlike previous work this model allows for arbitrary camera motion, including accelerations, is exact rather than a linearization and allows for arbitrary camera projection models, for example fisheye or panoramic. We show the significance of the errors introduced by a rolling shutter for typical robot vision problems such as structure from motion, visual odometry and pose estimation.
Resumo:
The ability to build high-fidelity 3D representations of the environment from sensor data is critical for autonomous robots. Multi-sensor data fusion allows for more complete and accurate representations. Furthermore, using distinct sensing modalities (i.e. sensors using a different physical process and/or operating at different electromagnetic frequencies) usually leads to more reliable perception, especially in challenging environments, as modalities may complement each other. However, they may react differently to certain materials or environmental conditions, leading to catastrophic fusion. In this paper, we propose a new method to reliably fuse data from multiple sensing modalities, including in situations where they detect different targets. We first compute distinct continuous surface representations for each sensing modality, with uncertainty, using Gaussian Process Implicit Surfaces (GPIS). Second, we perform a local consistency test between these representations, to separate consistent data (i.e. data corresponding to the detection of the same target by the sensors) from inconsistent data. The consistent data can then be fused together, using another GPIS process, and the rest of the data can be combined as appropriate. The approach is first validated using synthetic data. We then demonstrate its benefit using a mobile robot, equipped with a laser scanner and a radar, which operates in an outdoor environment in the presence of large clouds of airborne dust and smoke.
Resumo:
Outdoor robots such as planetary rovers must be able to navigate safely and reliably in order to successfully perform missions in remote or hostile environments. Mobility prediction is critical to achieving this goal due to the inherent control uncertainty faced by robots traversing natural terrain. We propose a novel algorithm for stochastic mobility prediction based on multi-output Gaussian process regression. Our algorithm considers the correlation between heading and distance uncertainty and provides a predictive model that can easily be exploited by motion planning algorithms. We evaluate our method experimentally and report results from over 30 trials in a Mars-analogue environment that demonstrate the effectiveness of our method and illustrate the importance of mobility prediction in navigating challenging terrain.
Resumo:
This paper presents a full system demonstration of dynamic sensorbased reconfiguration of a networked robot team. Robots sense obstacles in their environment locally and dynamically adapt their global geometric configuration to conform to an abstract goal shape. We present a novel two-layer planning and control algorithm for team reconfiguration that is decentralised and assumes local (neighbour-to-neighbour) communication only. The approach is designed to be resource-efficient and we show experiments using a team of nine mobile robots with modest computation, communication, and sensing. The robots use acoustic beacons for localisation and can sense obstacles in their local neighbourhood using IR sensors. Our results demonstrate globally-specified reconfiguration from local information in a real robot network, and highlight limitations of standard mesh networks in implementing decentralised algorithms.
Resumo:
Real-world environments such as houses and offices change over time, meaning that a mobile robot’s map will become out of date. In this work, we introduce a method to update the reference views in a hybrid metrictopological map so that a mobile robot can continue to localize itself in a changing environment. The updating mechanism, based on the multi-store model of human memory, incorporates a spherical metric representation of the observed visual features for each node in the map, which enables the robot to estimate its heading and navigate using multi-view geometry, as well as representing the local 3D geometry of the environment. A series of experiments demonstrate the persistence performance of the proposed system in real changing environments, including analysis of the long-term stability.