908 resultados para Optimized eco-productive paradigm
Resumo:
Computer vision-based food recognition could be used to estimate a meal's carbohydrate content for diabetic patients. This study proposes a methodology for automatic food recognition, based on the Bag of Features (BoF) model. An extensive technical investigation was conducted for the identification and optimization of the best performing components involved in the BoF architecture, as well as the estimation of the corresponding parameters. For the design and evaluation of the prototype system, a visual dataset with nearly 5,000 food images was created and organized into 11 classes. The optimized system computes dense local features, using the scale-invariant feature transform on the HSV color space, builds a visual dictionary of 10,000 visual words by using the hierarchical k-means clustering and finally classifies the food images with a linear support vector machine classifier. The system achieved classification accuracy of the order of 78%, thus proving the feasibility of the proposed approach in a very challenging image dataset.
Resumo:
We show that a single-layer antireflection coating on a THz source of high refractive index can substantially increase the transmission of emitted THz pulses. Calculations indicate that the optimum coating thickness depends on the exact shape of the generated THz waveform and whether the transmitted waveform is to be optimized for the highest peak (temporal) amplitude, peak spectral amplitude, or pulse energy. We experimentally demonstrate a 15% increase in peak amplitude, a 33% increase in peak spectral amplitude, and a 48% increase in energy for a 100 μm thick fused silica AR coating on a lithium niobate crystal used as THz emitter.
Resumo:
The aim of this study was to investigate unconscious priming by the use of a spatial mirror-masking paradigm. Words and nonwords with no under-length letters are mirrored at their horizontal axis. The results are figures of geometric-like forms that contain letters in their upper part. In the three experiments reported in this study, a priming procedure used such mirrored words and nonwords as primes. Participants were ignorant of the nature of the construction of the stimuli. Perceptual reports of the participants revealed that they did not realize that words were hidden in the primes. Nevertheless, they showed priming in all three experiments. Priming effects were replicated with prime–target SOAs of between 1 and 3 s. Functional dissociations were found between ignorant and informed participants. Informed groups showed perceptual and semantic priming, while ignorant groups showed only perceptual priming.
Resumo:
The budding yeast multi-K homology domain RNA-binding protein Scp160p binds to > 1000 messenger RNAs (mRNAs) and polyribosomes, and its mammalian homolog vigilin binds transfer RNAs (tRNAs) and translation elongation factor EF1alpha. Despite its implication in translation, studies on Scp160p's molecular function are lacking to date. We applied translational profiling approaches and demonstrate that the association of a specific subset of mRNAs with ribosomes or heavy polysomes depends on Scp160p. Interaction of Scp160p with these mRNAs requires the conserved K homology domains 13 and 14. Transfer RNA pairing index analysis of Scp160p target mRNAs indicates a high degree of consecutive use of iso-decoding codons. As shown for one target mRNA encoding the glycoprotein Pry3p, Scp160p depletion results in translational downregulation but increased association with polysomes, suggesting that it is required for efficient translation elongation. Depletion of Scp160p also decreased the relative abundance of ribosome-associated tRNAs whose codons show low potential for autocorrelation on mRNAs. Conversely, tRNAs with highly autocorrelated codons in mRNAs are less impaired. Our data indicate that Scp160p might increase the efficiency of tRNA recharge, or prevent diffusion of discharged tRNAs, both of which were also proposed to be the likely basis for the translational fitness effect of tRNA pairing.
Resumo:
Content Distribution Networks are mandatory components of modern web architectures, with plenty of vendors offering their services. Despite its maturity, new paradigms and architecture models are still being developed in this area. Cloud Computing, on the other hand, is a more recent concept which has expanded extremely quickly, with new services being regularly added to cloud management software suites such as OpenStack. The main contribution of this paper is the architecture and the development of an open source CDN that can be provisioned in an on-demand, pay-as-you-go model thereby enabling the CDN as a Service paradigm. We describe our experience with integration of CDNaaS framework in a cloud environment, as a service for enterprise users. We emphasize the flexibility and elasticity of such a model, with each CDN instance being delivered on-demand and associated to personalized caching policies as well as an optimized choice of Points of Presence based on exact requirements of an enterprise customer. Our development is based on the framework developed in the Mobile Cloud Networking EU FP7 project, which offers its enterprise users a common framework to instantiate and control services. CDNaaS is one of the core support components in this project as is tasked to deliver different type of multimedia content to several thousands of users geographically distributed. It integrates seamlessly in the MCN service life-cycle and as such enjoys all benefits of a common design environment, allowing for an improved interoperability with the rest of the services within the MCN ecosystem.
Resumo:
Il contributo ripercorre la relazione uomo-castagno partendo dalle ultime glaciazioni per arrivare ai giorni nostri, con una crescente attenzione per le contrade insubriche, dove la castanicoltura raggiunse livelli straordinari di sviluppo. Dopo una sintesi critica sui primi indizi di coltivazione, si esamina la castanicoltura nel mondo greco e romano fino all’introduzione della coltivazione del castagno nell’area insubrica. Particolare attenzione è riservata al periodo aureo tardomedievale della castanicoltura nella Svizzera italiana, comprovato con dati linguistici, con l’analisi dei sistemi produttivi (composizione varietale, tecniche di essiccazione) e delle consuetudini locali. Si indagano in seguito le ragioni e le tappe storiche del declino della castanicoltura tradizionale. Si conclude discutendo la situazione attuale e le prospettive future dei castagneti a Sud delle Alpi, confrontati con alcuni problemi incalzanti come l’invecchiamento delle ceppaie nei cedui abbandonati e la comparsa di un insidioso parassita, il cinipide galligeno.
Resumo:
If we postulate a need for the transformation of society towards sustainable development, we also need to transform science and overcome the fact/value split that makes it impossible for science to be accountable to society. The orientation of this paradigm transformation in science has been under debate for four decades, generating important theoretical concepts, but they have had limited impact until now. This is due to a contradictory normative science policy framing that science has difficulties dealing with, not least of all because the dominant framing creates a lock-in. We postulate that in addition to introducing transdisciplinarity, science needs to strive for integration of the normative aspect of sustainable development at the meta-level. This requires a strategically managed niche within which scholars and practitioners from many different disciplines can engage in a long-term common learning process, in order to become a “thought collective” (Fleck) capable of initiating the paradigm transformation. Arguing with Piaget that “decentration” is essential to achieve normative orientation and coherence in a learning collective, we introduce a learning approach—Cohn's “Theme-Centred Interaction”—which provides a methodology for explicitly working with the objectivity and subjectivity of statements and positions in a “real-world” context, and for consciously integrating concerns of individuals in their interdependence with the world. This should enable a thought collective to address the epistemological and ethical barriers to science for sustainable development.
Optimized method for black carbon analysis in ice and snow using the Single Particle Soot Photometer
Resumo:
One of the current challenges in evolutionary ecology is understanding the long-term persistence of contemporary-evolving predator–prey interactions across space and time. To address this, we developed an extension of a multi-locus, multi-trait eco-evolutionary individual-based model that incorporates several interacting species in explicit landscapes. We simulated eco-evolutionary dynamics of multiple species food webs with different degrees of connectance across soil-moisture islands. A broad set of parameter combinations led to the local extinction of species, but some species persisted, and this was associated with (1) high connectance and omnivory and (2) ongoing evolution, due to multi-trait genetic variability of the embedded species. Furthermore, persistence was highest at intermediate island distances, likely because of a balance between predation-induced extinction (strongest at short island distances) and the coupling of island diversity by top predators, which by travelling among islands exert global top-down control of biodiversity. In the simulations with high genetic variation, we also found widespread trait evolutionary changes indicative of eco-evolutionary dynamics. We discuss how the ever-increasing computing power and high-resolution data availability will soon allow researchers to start bridging the in vivo–in silico gap.
Resumo:
Pneumolysin (PLY), a key virulence factor of Streptococcus pneumoniae, permeabilizes eukaryotic cells by forming large trans-membrane pores. PLY imposes a puzzling multitude of diverse, often mutually excluding actions on eukaryotic cells. Whereas cytotoxicity of PLY can be directly attributed to the pore-mediated effects, mechanisms that are responsible for the PLY-induced activation of host cells are poorly understood. We show that PLY pores can be repaired and thereby PLY-induced cell death can be prevented. Pore-induced Ca2+ entry from the extracellular milieu is of paramount importance for the initiation of plasmalemmal repair. Nevertheless, active Ca2+ sequestration that prevents excessive Ca2+ elevation during the execution phase of plasmalemmal repair is of no less importance. The efficacy of plasmalemmal repair does not only define the fate of targeted cells but also intensity, duration and repetitiveness of PLY-induced Ca2+ signals in cells that were able to survive after PLY attack. Intracellular Ca2+ dynamics evoked by the combined action of pore formation and their elimination mimic the pattern of receptor-mediated Ca2+ signaling, which is responsible for the activation of host immune responses. Therefore, we postulate that plasmalemmal repair of PLY pores might provoke cellular responses that are similar to those currently ascribed to the receptor-mediated PLY effects. Our data provide new insights into the understanding of the complexity of cellular non-immune defense responses to a major pneumococcal toxin that plays a critical role in the establishment and the progression of life-threatening diseases. Therapies boosting plasmalemmal repair of host cells and their metabolic fitness might prove beneficial for the treatment of pneumococcal infections.
Resumo:
Mental color imagery abilities are commonly measured using paradigms that involve naming, judging, or comparing the colors of visual mental images of well-known objects (e.g., “Is a sunflower darker yellow than a lemon”?). Although this approach is widely used in patient studies, differences in the ability to perform such color comparisons might simply reflect participants’ general knowledge of object colors rather than their ability to generate accurate visual mental images of the colors of the objects. The aim of the present study was to design a new color imagery paradigm. Participants were asked to visualize a color for 3 s and then to determine a visually presented color by pressing 1 of 6 keys. The authors reasoned that participants would react faster when the imagined and perceived colors were congruent than when they were incongruent. In Experiment 1, participants were slower in incongruent than congruent trials but only when they were instructed to visualize the colors. The results in Experiment 2 demonstrate that the congruency effect reported in Experiment 1 cannot be attributed to verbalization of the color that had to be visualized. Finally, in Experiment 3, the congruency effect evoked by mental imagery correlated with performance in a perceptual version of the task. The authors discuss these findings with respect to the mechanisms that underlie mental imagery and patients suffering from color imagery deficits.