943 resultados para Oblique Gaze,


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Norcamphor (C7H10O) was subjected to plane strain simple shear in a see-through deformation rig at four different strain rate and temperature conditions. Two transient stages in the microfabric evolution to steady state are distinguished. The grain scale mechanisms associated with the microstructural and textural evolution vary with the applied temperature, strain rate and strain. In high-temperature-low-strain-rate experiments, computer integrated polarization microscopy reveals that the texture evolution is closely related to the crystallographic rotation paths and rotation rates of individual grains. High c-axis rotation rates at low to intermediate shear strains are related to the development of a symmetrical c-axis cross girdle by the end of the first transient stage (γ = 1.5 to 2). During the second transient stage (γ = 1.5 to 6), the cross girdle yields to an oblique c-axis single girdle as c-axis rotation rates decrease and the relative activity of grain boundary migration recrystallization increases. Steady state (γ > 8) is characterized by a stable end orientation of the sample texture and the cyclic growth, rotation and consumption of individual grains within the aggregate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plane strain simple shearing of norcamphor (C7H10O) in a see-through deformation rig to a shear strain of γ = 10.5 at a homologous temperature of Th = 0.81 yields a microfabric similar to that of quartz in amphibolite facies mylonite. Synkinematic analysis of the norcamphor microfabric reveals that the development of a steady-state texture is linked to changes in the relative activities of several grain-scale mechanisms. Three stages of textural and microstructural evolution are distinguished: (1) rotation and shearing of the intracrystalline glide planes are accommodated by localized deformation along three sets of anastomozing microshears. A symmetrical c-axis girdle reflects localized pure shear extension along the main microshear set (Sa) oblique to the bulk shear zone boundary (abbreviated as SZB); (2) progressive rotation of the microshears into parallelism with the SZB increases the component of simple shear on the Sa microshears. Grain-boundary migration recrystallization favours the survival of grains with slip systems oriented for easy glide. This is associated with a textural transition towards two stable c-axis point maxima whose skeletal outline is oblique with respect to the Sa microshears and the SZB; and (3) at high shear strains (γ > 8), the microstructure, texture and mechanism assemblage are strain invariant, but strain continues to partition into rotating sets of microshears. Steady state is therefore a dynamic, heterogeneous condition involving the cyclic nucleation, growth and consumption of grains.