966 resultados para OXIDATIVE METABOLISM
Resumo:
Pseudomonas fluorescens CHA0, an antagonist of phytopathogenic fungi in the rhizosphere of crop plants, elaborates and excretes several secondary metabolites with antibiotic properties. Their synthesis depends on three small RNAs (RsmX, RsmY, and RsmZ), whose expression is positively controlled by the GacS-GacA two-component system at high cell population densities. To find regulatory links between primary and secondary metabolism in P. fluorescens and in the related species Pseudomonas aeruginosa, we searched for null mutations that affected central carbon metabolism as well as the expression of rsmY-gfp and rsmZ-gfp reporter constructs but without slowing down the growth rate in rich media. Mutation in the pycAB genes (for pyruvate carboxylase) led to down-regulation of rsmXYZ and secondary metabolism, whereas mutation in fumA (for a fumarase isoenzyme) resulted in up-regulation of the three small RNAs and secondary metabolism in the absence of detectable nutrient limitation. These effects required the GacS sensor kinase but not the accessory sensors RetS and LadS. An analysis of intracellular metabolites in P. fluorescens revealed a strong positive correlation between small RNA expression and the pools of 2-oxoglutarate, succinate, and fumarate. We conclude that Krebs cycle intermediates (already known to control GacA-dependent virulence factors in P. aeruginosa) exert a critical trigger function in secondary metabolism via the expression of GacA-dependent small RNAs.
Resumo:
Disturbances of the cholesterol metabolism are associated with Alzheimer's disease (AD) risk and related cerebral pathology. Experimental studies found changing levels of cholesterol and its metabolites 24S-hydroxycholesterol (24S-OHC) and 27-hydroxycholesterol (27-OHC) to contribute to amyloidogenesis by increasing the production of soluble amyloid precursor protein (sAPP). The aim of this study was to evaluate the relationship between the CSF and circulating cholesterol 24S-OHC and 27-OHC, and the sAPP production as measured by CSF concentrations of sAPP forms in humans. The plasma and the CSF concentrations of cholesterol, 24S-OHC and 27-OHC, and the CSF concentrations of sAPPα, sAPPβ, and Aß1-42 were assessed in subjects with AD and controls with normal cognition. In multivariate regression tests including age, gender, albumin ratio, and apolipoprotein E (APOE)ε4 status CSF cholesterol, 24S-OHC, and 27-OHC independently predicted the concentrations of sAPPα and sAPPβ. The associations remained significant when analyses were separately performed in the AD group. Furthermore, plasma 27-OHC concentrations were associated with the CSF sAPP levels. The results suggest that high CSF concentrations of cholesterol, 24S-OHC, and 27-OHC are associated with increased production of both sAPP forms in AD.
Resumo:
The melanocortin system is implicated in the expression of many phenotypic traits. Activation of the melanocortin MC(1) receptor by melanocortin hormones induces the production of brown/black eumelanic pigments, while activation of the four other melanocortin receptors affects other physiological and behavioural functions including stress response, energy homeostasis, anti-inflammatory and sexual activity, aggressiveness and resistance to oxidative stress. We recently proposed the hypothesis that some melanocortin-physiological and -behavioural traits are correlated within individuals. This hypothesis predicts that the degree of eumelanin production may, in some cases, be associated with the regulation of glucocorticoids, immunity, resistance to oxidative stress, energy homeostasis, sexual activity, and aggressiveness. A review of the zoological literature and detailed experimental studies in a free-living population of barn owls (Tyto alba) showed that indeed melanic coloration is often correlated with the predicted physiological and behavioural traits. Support for predictions of the hypothesis that covariations between coloration and other phenotypic traits stem from pleiotropic effects of the melanocortin system raises a number of theoretical and empirical issues from evolutionary and pharmacological point of views.
Resumo:
Microtubule-associated protein 1B, MAP1B, is a major cytoskeletal protein during brain development and one of the largest brain MAPs associated with microtubules and microfilaments. Here, we identified several proteins that bind to MAP1B via immunoprecipitation with a MAP1B-specific antibody, by one and two-dimensional gel electrophoresis and subsequent mass spectrometry identification of precipitated proteins. In addition to tubulin and actin, a variety of proteins were identified. Among these proteins were glyceraldehyde-3-phosphate dehydrogenase (GAPDH), heat shock protein 8, dihydropyrimidinase related proteins 2 and 3, protein-L-isoaspartate O-methyltransferase, beta-spectrin, and clathrin protein MKIAA0034, linking either directly or indirectly to MAP1B. In particular, GAPDH, a key glycolytic enzyme, was bound in large quantity to the heavy chain of MAP1B in adult brain tissue. In vitro binding studies confirmed a direct binding of GAPDH to MAP1B. In PC12 cells, GAPDH was found in cytoplasm and nuclei and partially co-localized with MAP1B. It disappeared from the cytoplasm under oxidative stress or after a disruption of cytoskeletal elements after colcemid or cytochalasin exposure. GAPDH may be essential in the local energy provision of cytoskeletal structures and MAP1B may help to keep this key enzyme close to the cytoskeleton.
Resumo:
Résumé But: Chez les individus sveltes et en bonne santé, les modifications de la sensibilité à l'insuline secondaires à l'administration de dexaméthasone pendant deux jours sont compensées par une modification de la sécrétion d'insuline, permettant le maintien de l'homéostasie glucidique. Cette étude évalue les modifications du métabolisme glucidique et de la sécrétion d'insuline induites par une administration limitée de dexaméthasone chez les femmes obèses. Méthode de recherche: Onze femmes obèses ayant une tolérance au glucose normale ont été étudiées à deux reprises, 1° sans dexaméthasone et 2° après deux jours d'administration de dexaméthasone à faible dose. Un clamp hyperglycémique comportant deux plateaux (taux plasmatique de glucose à 7.5, respectivement 10 mM) avec du glucose marqué (6.6 ²H2 glc) a été utilisé pour déterminer la sécrétion d'insuline et le métabolisme du glucose du corps entier. Les résultats ont été comparés à ceux d'un groupe de huit femmes sveltes. Résultats : Sans dexaméthasone, les femmes obèses avaient un taux d'insuline plasmatique supérieur à jeun, durant le premier pic de sécrétion d'insuline, et aux deux plateaux hyperglycémiques. Elles avaient toutefois un métabolisme glucidique normal comparé à celui des femmes sveltes, ce qui indique une compensation adéquate. Après administration de la dexaméthasone, les femmes obèses avaient une augmentation du taux d'insuline plasmatique de 66 à 92%, mais une baisse de stockage du glucose de 15.4%. Ceci contrastait avec l'augmentation du taux d'insuline plasmatique de 91 à 113% chez les femmes sveltes et l'absence de changement de stockage du glucose du corps entier. Discussion : L'administration de dexaméthasone conduit à une baisse significative du stockage du glucose du corps entier pour une glycémie fixée chez les femmes obèses mais non chez les femmes sveltes. Ceci indique que les femmes obèses sont incapables d'accroître adéquatement leur sécrétion d'insuline. Abstract: Objective: In healthy lean individuals, changes in insulin sensitivity occurring as a consequence of a 2-day dexamethasone administration are compensated for by changes in insulin secretion, allowing glucose homeostasis to be maintained. This study evaluated the changes in glucose metabolism and insulin secretion induced by short-term dexamethasone administration in obese women. Research Methods and Procedures: Eleven obese women with normal glucose tolerance were studied on two occasions, without and after 2 days of low-dose dexamethasone administration. A two-step hyperglycemic clamp (7.5 and 10 mr1/1 glucose) with 6,6 2H2 glucose was used to assess insulin secretion and whole body glucose metabolism. Results were compared with those obtained in a group of eight lean women. Results: Without dexamethasone, obese women had higher plasma insulin concentrations in the fasting state, during the first phase of insulin secretion, and at the two hyperglycemic plateaus. However, they had normal whole body glucose metabolism compared with lean women, indicating adequate compensation. After dexamethasone, obese women had a 66% to 92% increase in plasma insulin concentrations but a 15.4% decrease in whole body glucose disposal. This contrasted with lean women, who had a 91% to 113% increase in plasma insulin concentrations, with no change in whole body glucose disposal. Discussion: Dexamethasone administration led to a significant reduction in whole body glucose disposal at fixed glycemia in obese but not lean women. This indicates that obese women are unable to increase their insulin secretion appropriately.
Resumo:
Amphetamine derivatives such as methamphetamine (METH) and 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) are drugs widely abused in a recreational context. This has led to concern because of the evidence that they are neurotoxic in animal models and cognitive impairments have been described in heavy abusers. The main targets of these drugs are plasmalemmal and vesicular monoamine transporters, leading to reverse transport and increased monoamine efflux to the synapse. As far as neurotoxicity is concerned, increased reactive oxygen species (ROS) production seems to be one of the main causes. Recent research has demonstrated that blockade of 7 nicotinic acetylcholine receptors (nAChR) inhibits METH- and MDMA-induced ROS production in striatal synaptosomes which is dependent on calcium and on NO-synthase activation. Moreover, 7 nAChR antagonists (methyllycaconitine and memantine) attenuated in vivo the neurotoxicity induced by METH and MDMA, and memantine prevented the cognitive impairment induced by these drugs. Radioligand binding experiments demonstrated that both drugs have affinity to 7 and heteromeric nAChR, with MDMA showing lower Ki values, while fluorescence calcium experiments indicated that MDMA behaves as a partial agonist on 7 and as an antagonist on heteromeric nAChR. Sustained Ca increase led to calpain and caspase-3 activation. In addition, modulatory effects of MDMA on 7 and heteromeric nAChR populations have been found.
Resumo:
OBJECTIVE: Impaired endothelial function was demonstrated in HIV-infected persons on protease inhibitor (PI)-containing antiretroviral therapy, probably due to altered lipid metabolism. Atazanavir is a PI causing less atherogenic lipoprotein changes. This study determined whether endothelial function improves after switching from other PI to atazanavir. DESIGN: Randomised, observer-blind, treatment-controlled trial. SETTING: Three university-based outpatient clinics. PATIENTS: 39 HIV-infected persons with suppressed viral replication on PI-containing regimens and fasting low-density lipoprotein (LDL)-cholesterol greater than 3 mmol/l. INTERVENTION: Patients were randomly assigned to continue the current PI or change to unboosted atazanavir. MAIN OUTCOME MEASURES: Endpoints at week 24 were endothelial function assessed by flow-mediated dilation (FMD) of the brachial artery, lipid profiles and serum inflammation and oxidative stress parameters. RESULTS: Baseline characteristics and mean FMD values of the two treatment groups were comparable (3.9% (SD 1.8) on atazanavir versus 4.0% (SD 1.5) in controls). After 24 weeks' treatment, FMD decreased to 3.3% (SD 1.4) and 3.4% (SD 1.7), respectively (all p = ns). Total cholesterol improved in both groups (p<0.0001 and p = 0.01, respectively) but changes were more pronounced on atazanavir (p = 0.05, changes between groups). High-density lipoprotein and triglyceride levels improved on atazanavir (p = 0.03 and p = 0.003, respectively) but not in controls. Serum inflammatory and oxidative stress parameters did not change; oxidised LDL improved significantly in the atazanavir group. CONCLUSIONS: The switch from another PI to atazanavir in treatment-experienced patients did not result in improvement of endothelial function despite significantly improved serum lipids. Atherogenic lipid profiles and direct effects of antiretroviral drugs on the endothelium may affect vascular function. Trial registration number: NCT00447070.
Resumo:
Polyamines (PAs) are small polycationic compounds present in all living organisms. Compelling evidences indicate a role for PAs in plant protection against stress. During the recent years, genetic, molecular and ‘omic’ approaches have been undertaken to unravel the role of PAs in stress signaling. Overall, results point to intricate relationships between PAs, stress hormone pathways and ROS signaling. Such cross-regulations condition stress signaling through the modulation of abscisic acid (ABA) and ROS amplification-loops. In this chapter we compile our recent findings which elucidate molecular mechanisms and signalingpathways by which PAs contribute to stress protection in plants.
Resumo:
The purpose of this study was to compare the effects of propranolol administered either by i.v. infusion or by prolonged oral administration (4 days) during the first 3 weeks following burns. The resting metabolic rate (RMR) of 10 non-infected fasting burned patients (TBSA: 28 per cent, range 18-37 per cent) was determined four times consecutively by indirect calorimetry (open circuit hood system) following: (1) i.v. physiological saline; (2) i.v. propranolol infusion (2 micrograms/kg/min following a bolus of 80 micrograms/kg); (3) oral propranolol (40 mg q.i.d. during 4 +/- 1 days); and (4) in control patients. All patients showed large increases in both RMR (144 +/- 2 per cent of reference values) and in urinary catecholamine excretion (three to four times as compared to control values). The infusion of propranolol induced a significant decrease in RMR to 135 +/- 2 per cent and oral propranolol to 129 +/- 3 per cent of reference values. A decrease in lipid oxidation but no change in carbohydrate and protein oxidation were observed during propranolol administration. It is concluded that the decrease in RMR induced by propranolol was not influenced by the route of administration. The magnitude of the decrease in energy expenditure suggests that beta-adrenergic hyperactivity represents only one of the mediators of the hypermetabolic response to burn injury.
Resumo:
Due to the development of new 'bedside' investigative methods, relatively abstract physiologic concepts such as energy cost of growth, efficiency of protein gain, metabolic cost of protein gain and protein turnover have been quantified in very low birthweight infants. 'Healthy' premature infants expend about 30% of their energy to cover the metabolic cost of growth. Stable isotope techniques using 15N-(or 13C)-labeled amino acids gave a new insight into this very high energy demanding process represented by the protein accretion in growing tissues. It has been demonstrated that the rate of protein synthesis (10-12 g/kg/day) greatly exceeds that necessary for net protein gain (2 g/kg/day). The postnatal growth and protein metabolism have different characteristics in 'healthy', 'sick' or 'intrauterine undernourished' very low birthweight infants.
Resumo:
Acute ethanol administration stimulates sympathetic nervous system activity. The present study was designed to determine whether this sympathetic activation affects glycogenolysis and total hepatic glucose production (HGP) during ethanol-induced inhibition of gluconeogenesis. Nineteen volunteers participated in four protocols. Two protocols aimed to study--using combined infusion of [6,6-2H2]glucose and [U-13C]glucose, VCO2 and 13CO2 measurements--the effects of ethanol infusion alone (n = 10) or with propranolol (n = 6) or phentolamine infusion (n = 4) on HGP, glucose disposal (Rd), glucose oxidation [13C]Glcox and non-oxidative glucose disposal (NOGD = Rd - [13C]Glcox). The fourth protocol assessed the effects of saline infusion alone on HGP. Using ethanol, HGP decreased by 23%, Rd by 20% and glycaemia by 9% (all P < 0.001); heart rate increased by 10%, whereas blood pressure remained unchanged. The effects were not observed with saline, except a slight (10%) decrease in HGP (P < 0.01 vs. ethanol). Ethanol did not affect [13C]Glcox but decreased NOGD by 73% (P < 0.001). Propranolol or phentolamine did not alter any of the effects of ethanol on glucose metabolism, but decreased mean arterial pressure. Propranolol prevented the ethanol-induced increase in heart rate. In conclusion, ethanol decreased blood glucose by decreasing HGP, presumably by inhibiting gluconeogenesis. Sympathetic activation prevented the decrease in blood pressure produced by ethanol but did not stimulate glycogenolysis.
Resumo:
Seven obese Type 2 diabetic patients were studied for two 4-h periods after ingestion of a glucose load to determine the effects of preprandial subcutaneous injection of Insulin Lispro (5 min before the meal) or regular insulin (20 min before the meal) on glucose metabolism. Glucose production and utilisation were measured using a dual isotope method. After Lispro, the mean postprandial increase in plasma glucose was 29% lower and the increase in insulin concentration 25% higher than after regular insulin (p < 0.05). Suppression of endogenous glucose production was similar with both types of insulin. Thus, preprandial injection of Lispro reduced postprandial glucose increments in Type 2 diabetic patients as compared to regular insulin. This effect is best explained by the increased postprandial bioavailability of Lispro.
Resumo:
RESUME Il a longtemps été admis que le glucose était le principal, sinon le seul substrat du métabolisme énergétique cérébral. Néanmoins, des études récentes indiquent que dans des situations particulières, d'autres substrats peuvent être employés. C'est le cas des monocarboxylates (lactate et pyruvate principalement). Bien que la barrière hématoencéphalique soit peu perméable à ces molécules, elles deviennent néanmoins des substrats possibles si elles sont produites localement. Les deux systèmes enzymatiques pivots des voies glycolytiques et oxydatives sont la lactate déshydrogénase (LDH, EC 1.1.1.27) qui catalyse l'interconversion du pyruvate et du lactate et le complexe pyruvate déshydrogénase qui catalyse la conversion irréversible du pyruvate en acétyl-CoA qui entre dans la respiration mitochondriale. Nous avons étudié la localisation, tant régionale que cellulaire, des isoformes LDH-1, LDH-5 et PDHEla dans le cerveau du chat et dé l'homme au moyen de diverses techniques histologiques. Dans un premier temps, des investigations par hybridation in situ au moyen d'oligosondes marquées au 33P sur de coupes de cerveau de chat ont permis de montrer une différence de l'expression des enzymes à vocation oxydative (LDH-1 et PDHA1, le gène codant pour la protéine PDHEIa) par rapport à LDH-5, isoforme qui catalyse préférentiellement la formation de lactate. LDH-1 et PDHA 1 ont des distributions similaires et sont enrichies dans de nombreuses structures cérébrales, comme l'hippocampe, de nombreux noyaux thalamiques et des structures pontiques. Le cortex cérébral exhibe également une expression importante de LDH-1 et PDH. LDH-5 a par contre une expression largement plus diffuse à travers le cerveau, bien que l'on trouve néanmoins un enrichissement plus important dans l'hippocampe. Ces résultats sont en accord avec les observations que nous avons précédemment publiées chez le rongeur pour LDH-1 et LDH-5 (Laughton et collaborateurs, 2000). Des analyses par PCR en temps réel ont confirmé que dans certaines régions, LDH-1 est exprimée de façon nettement plus importante que LDH-5. Dans un deuxième temps, nous avons appliqué sur des coupes histologiques d'hippocampe et de cortex occipital humain post-mortem des anticorps monoclonaux spécifiques de l'isoforme LDH-5 et la sous-unité PDHela du complexe pyruvate déshydrogénase. Là aussi, les immunoréactions révèlent une ségrégation régionale mais aussi cellulaire des deux enzymes. Dans les deux régions étudiées, LDH-5 est localisée exclusivement dans les astrocytes. Dans le cortex occipital, la matière blanche et également la couche I corticale sont immunopositives pour LDH-5. Dans l'hippocampe, le CA4 et l'alveus exhibe l'immunomarquage le plus intense pour LDH-5. Seuls des neurones (à de rares exceptions quelques astrocytes) sont immunopositifs à l'anticorps monoclonal dirigé contre PDHela. La couche IV du cortex occipital présente la plus forte immunoréaction. Dans l'hippocampe, une immunoréactivité est observée dans le stratum granulosum et à travers la région CA1 jusqu'à la région CA3. L'ensemble de ces résultats montre une hétérogénéité métabolique dans le cerveau et étaye l'hypothèse "astrocyte-neurone lactate shuttle" (ANL5) (Bittar et collaborateurs, 1996; Magistretti et Pellerin, 1999) qui propose que les astrocytes fournissent aux neurones activés du lactate comme substrat alternatif de leur métabolisme énergétique. ABSTRACT For a long time now, glucose has been thought to be the main, if not the sole substrate for brain energy metabolism. Recent data nevertheless suggest that other molecules, such as monocarboxylates (lactate and pyruvate mainly) could be suitable substrates. Although monocarboxylates poorly cross the blood brain barrier (BBB), such substrates could replace glucose if produced locally. The two key enzymatic systems required for the use and production of these substats are lactate dehydrogenase (LDH; EC 1.1.1.27) that catalyses the interconversion of lactate and pyruvate and the pyruvate dehydrogenase complex that irreversibly funnels pyruvate towards the mitochondrial TCA cycle and oxydative phosphorylation. Our study consisted in localizing these different systems with various histochemical procedures in the cat brain and two regions, i.e. hippocampus and primary visual cortex, of the human brain. First, by means of in situ hybridization with 33P labeled oligoprobes, we have demonstrated that the more oxidative enzymes (LDH-1 and PDHA1, the gene coding for PDHEla) are highly expressed in a variety of feline brain structures. These structures include the hippocampus, various thalamic nuclei and the pons. The cerebral cortex exhibits also a high LDH-1 and PDHAl expression. On the other hand, LDH-5 expression is poorer and more diffuse, although the hippocampus does seem to have a higher expression. These fmdings are consistent with our previous observation of the expression of LDH1 and LDH-5 in the rodent brain (Laughton et al, 2000). Real-time PCR (TagMan tm) revealed that, in various regions, LDH-1 is effectively more highly expressed than LDH-5. In a second set of experiments, monoclonal antibodies to LDH-5 and PDHeIa were applied to cryostat sections of post-mortem human hippocampus and occipital cortex. These procedures revealed not only that the two enzymes have different regional distributions, but also distinct cellular localisation. LDH-5 immunoreactivity is solely observed in astrocytes. In the occipital cortex, the white matter and layer I are immunopositive. In the hippocampus, the alveus and CA4 show LDH-5 immunoréactivity. PDHeIa has been detected, with few exceptions, only in neurons. Layer IV of the occipital cortex was most immmunoreactive. In the hippocampus, PDHela immunoreactivity is noticed in the stratum granulosum and through CA 1 to CA3 areas. The overall observations made in this study show that there is a metabolic heterogeneity in the brain and our findings support the hypothesis of an astrocyte-neuron lactate shuttle (ANLS)(Bittar et al., 1996; Magistretti & Pellerin, 1999) where astrocytes export to active neurons lactate to fuel their energy demands.