936 resultados para ORGANIZATIONAL CITIZENSHIP BEHAVIOR


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Determination of shear strength of brick-mortar bed joint is critical to overcome the sliding-shear or joint-shear failure in masonry. In the recent past, researchers have attempted to enhance the shear strength and deformation capacity of brick-mortar bed joints by gluing fiber-reinforced polymer (FRP) composite across the bed joint. FRP composites offer several advantages like high strength-to-weight ratio, and ease of application in terms of labor, time, and reduced curing period. Furthermore, FRP composites are desirable for strengthening old masonry buildings having heritage value because of its minimal interference with the existing architecture. A majority of earlier studies on shear strengthening of masonry available in the literature adopted masonry having the ratio of modulus of elasticity of masonry unit (Emu) to modulus of elasticity of mortar (Em) greater than one. Information related to shear behavior of FRP glued masonry composed of masonry units having Young's modulus lower than mortar is limited. Hence the present study is focused on characterizing the interfacial behavior of brick-mortar bed joint of masonry assemblages composed of solid burnt clay bricks and cement-sand mortar (E-mu/E-m ratio less than one), strengthened with FRP composites. Masonry triplets and prisms with bed joint inclined to loading axis (0 degrees, 30 degrees, 45 degrees, 60 degrees and 90 degrees) are employed in this study. Glass and carbon FRP composites composed of bidirectional FRP fabric with equal density in both directions are used for strengthening masonry. Masonry triplets are glued with glass and carbon FRP composites in two configurations: (1) both faces of the triplet specimens are fully glued with GFRP composites; and (2) both faces of the triplet specimens are glued with GFRP and CFRP composites in strip form. The performance of masonry assemblages strengthened with FRP composites is assessed in terms of gain in shear strength, shear displacement, and postpeak behavior for various configurations and types of FRP composites considered. A semianalytical model is proposed for the prediction of shear strength of masonry bed joints glued with FRP composites. A composite failure envelope consisting of a Coulomb friction model and a compression cap is obtained for unreinforced masonry and GFRP-strengthened masonry based on the test results of masonry triplets and masonry prisms with bed joints having various inclinations to the loading (C) 2015 American Society of Civil Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hot deformation behavior of Nb-1 wt.%Zr alloy was studied using uniaxial compression tests carried out in vacuum to a true strain of 0.6 in the temperature range of 900 to 1700 degrees C and the strain rate range of 3 x 10(-3) to 10 s(-1). The optimum regime of hot workability of Nb-1Zr alloy was determined from the strain rate sensitivity (m) contour plots. A high m of about 02 was obtained in the temperature and strain rate range of 1200-1500 degrees C and 10(-3) to 10(-1) s(-1) and 1600-1700 degrees C and 10(-1) to 1 s(-1). Microstructure of the deformed samples showed features of dynamic recrystallization within the high strain rate sensitivity domain. Compared to the study on Nb-1Zr-0.1C alloy, Nb-1Zr showed a lower flow stress and an optimum hot working domain at lower temperatures. In the 1500 to 1700 degrees C range the apparent activation energy of deformation for Nb-1Zr was 259 kJ mol(-1), the stress exponent 5, and the activation volume about 200 to 700 b(3). (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The stereology, variant distribution and coarsening behavior of semicoherent alpha(hcp) precipitates in a beta(bcc) matrix of a Ti5553 alloy has been analyzed, and a dominant 3-variant cluster has been observed in which the variants are related to each other by an axis-angle pair <<11(2)over bar> 0 >/60 degrees. Shape and spatial distribution independent elastic self and interaction energies for all pairwise and triplet combinations of a have been calculated and it is found that the 3-cluster combination that is experimentally observed most frequently has the lowest energy for the semicoherent state. The coarsening behavior of the delta distribution follows LSW kinetics after an initial transient, and has been modeled by phase field methods. (C) 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A real-space high order finite difference method is used to analyze the effect of spherical domain size on the Hartree-Fock (and density functional theory) virtual eigenstates. We show the domain size dependence of both positive and negative virtual eigenvalues of the Hartree-Fock equations for small molecules. We demonstrate that positive states behave like a particle in spherical well and show how they approach zero. For the negative eigenstates, we show that large domains are needed to get the correct eigenvalues. We compare our results to those of Gaussian basis sets and draw some conclusions for real-space, basis-sets, and plane-waves calculations. (C) 2016 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epoxy resin GY250 representing diglycidyl ethers of bisphenol-A (DGEBA) was reinforced with 1, 3 and 5 wt % of surface functionalized silver nanoparticles (F-AgNPs) which were synthesized using Couroupita guianensis leaves extract with a view of augmenting the corrosion control property of the epoxy resin and also imparting antimicrobial activity to epoxy coatings on mild steel. Corrosion resistance of the coatings was evaluated by EIS, potentiodynamic polarization studies and cross scratch tests. AFM, SEM, HRTEM and EDX were utilized to investigate the surface topography, morphology and elemental composition of the coatings on MS specimens. Results showed that the corrosion resistance, hardness and T-g of the DGEBA/F-AgNPs coatings increased at 1 wt % of F-AgNPs. The DGEBA/F-AgNPs coatings also offered manifold antimicrobial protection to the MS surfaces by inhibiting the growth of biofilm forming bacteria like P. aeruginosa, B. subtilis, the most common human pathogen E. coli and the most virulent human pathogenic yeast C. albicans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

对微孔泡沫塑料力学行为的研究文献进行了综述,简单介绍了微孔泡沫塑料的制备和表征方法,重点介绍了微孔泡沫塑料力学性能的研究工作,其中也包括作者近期在该领域的一些工作。这些工作主要讨论了微孔泡沫塑料的压缩、拉伸、冲击、疲劳和黏弹性效应。最后:给出了对该领域工作的一些讨论和展望。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The strengthening behavior of particle-reinforced metal-matrix composites (MMCp) is primarily attributed to the dislocation strengthening effect and the load-transfer effect. To account for these two effects in a unified way, a new hybrid approach is developed in this paper by incorporating the geometrically necessary dislocation strengthening effect into the incremental micromechanical scheme. By making use of this hybrid approach, the particle-size-dependent inelastic deformation behavior of MMCp is given. Some comparisons with the available experimental results demonstrate that the present approach is satisfactory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is of utmost importance to understand the spallation behaviour of heterogeneous materials. In this paper, a driven nonlinear threshold model with stress fluctuation is presented to study the effects of microstructural heterogeneity on continuum damage evolution. The spallation behavior of heterogeneity material is analyzed with this model. The heterogeniety of mesoscopic units is characterized in terms of Weibull modulus m of strength distibution and stress fluctuation parameter k. At high stress, the maximum damage increases with m; while at low stress, the maximum damage decreases. In addition, for low stress, severe stress fluctuation causes higher damage; while for high stress, causes lower damage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The room temperature creep behaviors of Ce-based bulk metallic glasses were examined by the use of nanoindentation. The creep rate and creep rate sensitivity of Ce-based BMGs were derived from indentation creep curves. The low creep rate sensitivity of Ce-based BMGs indicates that the room temperature creep is dominated by localized shear flow. The experimental creep curves can be described by a generalized Kelvin model. Furthermore, the creep retardation spectrum is calculated for the Ce-based metallic glasses. The results showed that creep retardation spectrum consists of two relatively separated peaks with the well defined characteristic relaxation times.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper the problem of a cylindrical crack located in a functionally graded material (FGM) interlayer between two coaxial elastic dissimilar homogeneous cylinders and subjected to a torsional impact loading is considered. The shear modulus and the mass density of the FGM interlayer are assumed to vary continuously between those of the two coaxial cylinders. This mixed boundary value problem is first reduced to a singular integral equation with a Cauchy type kernel in the Laplace domain by applying Laplace and Fourier integral transforms. The singular integral equation is then solved numerically and the dynamic stress intensity factor (DSIF) is also obtained by a numerical Laplace inversion technique. The DSIF is found to rise rapidly to a peak and then reduce and tend to the static value almost without oscillation. The influences of the crack location, the FGM interlayer thickness and the relative magnitudes of the adjoining material properties are examined. It is found among others that, by increasing the FGM gradient, the DSIF can be greatly reduced.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Graphite-flake reinforced Cu47Ti34Zr11 Ni-8 bulk metallic glass matrix composite was fabricated by water-cooled copper mould cast. Most of the graphite flakes still keep unreacted and distribute uniformly in the amorphous matrix except that some reactive wetting occurs by the formation of TiC particles around the flakes. It reveals that the presence of graphite flakes does not affect the onset of the glass transition temperature, crystallization reaction and liquidus of the metallic glass. The resulting material shows obvious serrated flow and higher fracture strength under room temperature compressive load, comparing with the monolithic bulk metallic glass (BMG). Three types of interaction between the shear bands and graphite flakes, namely, shear band termination, shear bands branching and new shear bands formation near the graphite flakes can be observed by quasi-static uniaxial compression test and bonded interface technique through Vickers indentation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 3D anisotropic elastoplastic-damage model was presented based on continuum damage mechanics theory. In this model, the tensor decomposition technique is employed. Combined with the plastic yield rule and damage evolution, the stress tensor in incremental format is obtained. The derivate eigenmodes in the proposed model are assumed to be related with the uniaxial behavior of the rock material. Each eigenmode has a corresponding damage variable due to the fact that damage is a function of the magnitude of the eigenstrain. Within an eigenmodes, different damage evolution can be used for tensile and compressive loadings. This model was also developed into finite element code in explicit format, and the code was integrated into the well-known computational environment ABAQUS using the ABAQUS/Explicit Solver. Numerical simulation of an uniaxial compressive test for a rock sample is used to examine the performance of the proposed model, and the progressive failure process of the rock sample is unveiled.