998 resultados para ORGANIZATION TEST
Resumo:
Genomic islands (GEIs) are large DNA segments, present in most bacterial genomes, that are most likely acquired via horizontal gene transfer. Here, we study the self-transfer system of the integrative and conjugative element ICEclc of Pseudomonas knackmussii B13, which stands model for a larger group of ICE/GEI with syntenic core gene organization. Functional screening revealed that unlike conjugative plasmids and other ICEs ICEclc carries two separate origins of transfer, with different sequence context but containing a similar repeat motif. Conjugation experiments with GFP-labelled ICEclc variants showed that both oriTs are used for transfer and with indistinguishable efficiencies, but that having two oriTs results in an estimated fourfold increase of ICEclc transfer rates in a population compared with having a single oriT. A gene for a relaxase essential for ICEclc transfer was also identified, but in vivo strand exchange assays suggested that the relaxase processes both oriTs in a different manner. This unique dual origin of transfer system might have provided an evolutionary advantage for distribution of ICE, a hypothesis that is supported by the fact that both oriT regions are conserved in several GEIs related to ICEclc.
Resumo:
The membrane organization of the alpha-subunit of purified (Na+ + K+)-ATPase ((Na+ + K+)-dependent adenosine triphosphate phosphorylase, EC 3.6.1.3) and of the microsomal enzyme of the kidney of the toad Bufo marinus was compared by using controlled trypsinolysis. With both enzyme preparations, digestions performed in the presence of Na+ yielded a 73 kDa fragment and in the presence of K+ a 56 kDa, a 40 kDa and small amounts of a 83 kDa fragment from the 96 kDa alpha-subunit. In contrast to mammalian preparations (Jørgensen, P.L. (1975) Biochim. Biophys. Acta 401, 399-415), trypsinolysis of the purified amphibian enzyme led to a biphasic loss of (Na+ + K+)-ATPase activity in the presence of both Na+ and K+. These data could be correlated with an early rapid cleavage of 3 kDa from the alpha-subunit in both ionic conditions and a slower degradation of the remaining 93 kDa polypeptide. On the other hand, in the microsomal enzyme, a 3 kDa shift of the alpha-subunit could only be produced in the presence of Na+. Our data indicate that (1) purification of the amphibian enzyme with detergent does not influence the overall topology of the alpha-subunit but produces a distinct structural alteration of its N-terminus and (2) the amphibian kidney enzyme responds to cations with similar conformational transitions as the mammalian kidney enzyme. In addition, anti alpha-serum used on digested enzyme samples revealed on immunoblots that the 40 kDa fragment was better recognized than the 56 kDa fragment. It is concluded that the NH2-terminal of the alpha-subunit contains more antigenic sites than the COOH-terminal domain in agreement with the results of Farley et al. (Farley, R.A., Ochoa, G.T. and Kudrow, A. (1986) Am. J. Physiol. 250, C896-C906).
Resumo:
Early detection of neural-tude defects is possible by determining Alpha-fetoprotein (AFP) in maternal serum. 16'685 pregnant women were observed. Three methods for the determination of the "normal" range are compared. The first one, already used in similar studies, makes use of a constant multiple of the median. The other two ones make use of robust estimates of location and scale. Their comparison shows the interest of the robust methods to reduce the interlaboratory variability.
Resumo:
To study the properties of human primary somatosensory (S1) cortex as well as its role in cognitive and social processes, it is necessary to noninvasively localize the cortical representations of the body. Being arguably the most relevant body parts for tactile exploration, cortical representations of fingers are of particular interest. The aim of the present study was to investigate the cortical representation of individual fingers (D1-D5), using human touch as a stimulus. Utilizing the high BOLD sensitivity and spatial resolution at 7T, we found that each finger is represented within three subregions of S1 in the postcentral gyrus. Within each of these three areas, the fingers are sequentially organized (from D1 to D5) in a somatotopic manner. Therefore, these finger representations likely reflect distinct activations of BAs 3b, 1, and 2, similar to those described in electrophysiological work in non-human primates. Quantitative analysis of the local BOLD responses revealed that within BA3b, each finger representation is specific to its own stimulation without any cross-finger responsiveness. This finger response selectivity was less prominent in BA 1 and in BA 2. A test-retest procedure highlighted the reproducibility of the results and the robustness of the method for BA 3b. Finally, the representation of the thumb was enlarged compared to the other fingers within BAs 1 and 2. These findings extend previous human electrophysiological and neuroimaging data but also reveal differences in the functional organization of S1 in human and nonhuman primates. Hum Brain Mapp 35:213-226, 2014. © 2012 Wiley Periodicals, Inc.
Resumo:
Le but de cette étude est de répondre aux 3 questions suivantes: - 1) Le test de MAST est-il applicable, dans sa traduction française, à la population d'un service de médecine interne d'un hôpital universitaire en Suisse romande ? - 2) Le test de MAST apporte-t-il des résultats concordants avec le diagnostic clinique d'une part, et avec les résultats tirés de la littérature d'autre part ? - 3) De quelles façons peut-on définir et choisir deux valeurs critiques du test afin d'optimaliser l'utilisation du test de MAST dans l'étude comparative projetée ? ANNEXE: Traduction littérale en langue française du : "Michigan Alcoholism Screening Test" (MAST); etc.
Resumo:
Several methods and algorithms have recently been proposed that allow for the systematic evaluation of simple neuron models from intracellular or extracellular recordings. Models built in this way generate good quantitative predictions of the future activity of neurons under temporally structured current injection. It is, however, difficult to compare the advantages of various models and algorithms since each model is designed for a different set of data. Here, we report about one of the first attempts to establish a benchmark test that permits a systematic comparison of methods and performances in predicting the activity of rat cortical pyramidal neurons. We present early submissions to the benchmark test and discuss implications for the design of future tests and simple neurons models
Resumo:
The objective of the investigation was the development of a test that would readily identify the potential of an aggregate to cause D-cracking because of its susceptivity to critical saturation. A Press-Ur-Meter was modified by replacing the air chamber with a one-inch diameter plastic tube calibrated in milli-. It was concluded that the pore index was sufficiently reliable to determine the D-cracking potential of limestone aggregates in all but a few cases where marginal results were obtained. Consistently poor or good results were always in agreement with established service records or concrete durability testing. In those instances where marginal results are obtained, the results of concrete durability testing should be considered when making the final determination of the D-cracking susceptibility of the aggregate in question. The following applications for the pore index test have been recommended for consideration: concrete durability testing be discontinued in the evaluation process of new aggregate sources with pore index results between 0-20 (Class 2 durability) and over 35 (Class 1) durability; composite aggregates with intermediate pore index results of 20-35 be tested on each stone type to facilitate the possible removal of low durability stone from the production process; and additional investigation should be made to evaluate the possibility of using the test to monitor and upgrade the acceptance of aggregate from sources associated with D-cracking.
Resumo:
The compressive strength of concrete is an important factor in the design of concrete structures and pavements. To assure the quality of the concrete placed at the project, concrete compressive cylinders are made at the jobsite. These cylinders undergo a destructive test to determine their compressive strength. However, the determination of concrete compressive strength of the concrete actually in the structure or pavement is frequently desirable. For this reason, a nondestructive test of the concrete is required. A nondestructive test of concrete compressive strength should be economical, easily performed by field personnel, and capable of producing accurate, reproducible results. The nondestructive test should be capable of detecting the extent of poor concrete in a pavement or structure due to improper handling, placement, or variations in mixing or materials.
Resumo:
Cardiovascular risk assessment might be improved with the addition of emerging, new tests derived from atherosclerosis imaging, laboratory tests or functional tests. This article reviews relative risk, odds ratios, receiver-operating curves, posttest risk calculations based on likelihood ratios, the net reclassification improvement and integrated discrimination. This serves to determine whether a new test has an added clinical value on top of conventional risk testing and how this can be verified statistically. Two clinically meaningful examples serve to illustrate novel approaches. This work serves as a review and basic work for the development of new guidelines on cardiovascular risk prediction, taking into account emerging tests, to be proposed by members of the 'Taskforce on Vascular Risk Prediction' under the auspices of the Working Group 'Swiss Atherosclerosis' of the Swiss Society of Cardiology in the future.
Resumo:
Background: Detection rates for adenoma and early colorectal cancer (CRC) are unsatisfactory due to low compliance towards invasive screening procedures such as colonoscopy. There is a large unmet screening need calling for an accurate, non-invasive and cost-effective test to screen for early neoplastic and pre-neoplastic lesions. Our goal is to identify effective biomarker combinations to develop a screening test aimed at detecting precancerous lesions and early CRC stages, based on a multigene assay performed on peripheral blood mononuclear cells (PBMC).Methods: A pilot study was conducted on 92 subjects. Colonoscopy revealed 21 CRC, 30 adenomas larger than 1 cm and 41 healthy controls. A panel of 103 biomarkers was selected by two approaches: a candidate gene approach based on literature review and whole transcriptome analysis of a subset of this cohort by Illumina TAG profiling. Blood samples were taken from each patient and PBMC purified. Total RNA was extracted and the 103 biomarkers were tested by multiplex RT-qPCR on the cohort. Different univariate and multivariate statistical methods were applied on the PCR data and 60 biomarkers, with significant p-value (< 0.01) for most of the methods, were selected.Results: The 60 biomarkers are involved in several different biological functions, such as cell adhesion, cell motility, cell signaling, cell proliferation, development and cancer. Two distinct molecular signatures derived from the biomarker combinations were established based on penalized logistic regression to separate patients without lesion from those with CRC or adenoma. These signatures were validated using bootstrapping method, leading to a separation of patients without lesion from those with CRC (Se 67%, Sp 93%, AUC 0.87) and from those with adenoma larger than 1cm (Se 63%, Sp 83%, AUC 0.77). In addition, the organ and disease specificity of these signatures was confirmed by means of patients with other cancer types and inflammatory bowel diseases.Conclusions: The two defined biomarker combinations effectively detect the presence of CRC and adenomas larger than 1 cm with high sensitivity and specificity. A prospective, multicentric, pivotal study is underway in order to validate these results in a larger cohort.
Resumo:
Research is described that was aimed at developing a test method which can be reasonably and rapidly performed in the laboratory and in the field to predict, with a high degree of certainty, the behavior of concrete subjected to the action of alternate freezing and thawing. The conductometric evaluation of concrete durability was explored with 3 different test methods: conductometric evaluation of the resistance of concrete to rapid freezing and thawing; conductomtric evaluation of the resistance of concrete to natural freezing and thawing, and conductometric evaluation of the pore size distribution of concrete and its correlation to concrete durability. The study showed that conductance could be used as a viable method for determining the durability of portland cement concrete. This would also allow the continuous monitoring of concrete durability without the removal twice per week from the freeze/thaw chamber. Recommendations for the continued development of these test methods are also included.
Resumo:
OBJECTIVE: Accuracy studies of Patient Safety Indicators (PSIs) are critical but limited by the large samples required due to low occurrence of most events. We tested a sampling design based on test results (verification-biased sampling [VBS]) that minimizes the number of subjects to be verified. METHODS: We considered 3 real PSIs, whose rates were calculated using 3 years of discharge data from a university hospital and a hypothetical screen of very rare events. Sample size estimates, based on the expected sensitivity and precision, were compared across 4 study designs: random and VBS, with and without constraints on the size of the population to be screened. RESULTS: Over sensitivities ranging from 0.3 to 0.7 and PSI prevalence levels ranging from 0.02 to 0.2, the optimal VBS strategy makes it possible to reduce sample size by up to 60% in comparison with simple random sampling. For PSI prevalence levels below 1%, the minimal sample size required was still over 5000. CONCLUSIONS: Verification-biased sampling permits substantial savings in the required sample size for PSI validation studies. However, sample sizes still need to be very large for many of the rarer PSIs.