981 resultados para Numismatica-Valencia-S. XIII-XIV


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

publié sous les auspices de l'Académie des Inscriptions et Belles-Lettres par Mayer Lambert et Louis Brandin

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Myosin B (MyoB) is one of the two short class XIV myosins encoded in the Plasmodium genome. Class XIV myosins are characterized by a catalytic "head," a modified "neck," and the absence of a "tail" region. Myosin A (MyoA), the other class XIV myosin in Plasmodium, has been established as a component of the glideosome complex important in motility and cell invasion, but MyoB is not well characterized. We analyzed the properties of MyoB using three parasite species as follows: Plasmodium falciparum, Plasmodium berghei, and Plasmodium knowlesi. MyoB is expressed in all invasive stages (merozoites, ookinetes, and sporozoites) of the life cycle, and the protein is found in a discrete apical location in these polarized cells. In P. falciparum, MyoB is synthesized very late in schizogony/merogony, and its location in merozoites is distinct from, and anterior to, that of a range of known proteins present in the rhoptries, rhoptry neck or micronemes. Unlike MyoA, MyoB is not associated with glideosome complex proteins, including the MyoA light chain, myosin A tail domain-interacting protein (MTIP). A unique MyoB light chain (MLC-B) was identified that contains a calmodulin-like domain at the C terminus and an extended N-terminal region. MLC-B localizes to the same extreme apical pole in the cell as MyoB, and the two proteins form a complex. We propose that MLC-B is a MyoB-specific light chain, and for the short class XIV myosins that lack a tail region, the atypical myosin light chains may fulfill that role.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vorbesitzer: Theodericus Franck; Hermann Isenbach; Bartholomaeusstift Frankfurt am Main

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND The human activation peptide of factor XIII (AP-FXIII) comprises the first 37 amino acids of the N-terminus and holds the FXIII in an inactive state. FXIII is activated either proteolytically by cleavage of AP-FXIII by thrombin, or non-proteolytically by high calcium concentrations. OBJECTIVE To investigate the role of AP-FXIII in the expression and stability of FXIII. METHODS We cloned 13 FXIII variants with progressive truncations of AP-FXIII from the N-terminus (delN-FXIII-A), expressed them in mammalian cells, and measured their thermostability, activation, and transglutaminase activity. We also used in silico calculations to analyze the stability of hypothetical delN-FXIII dimers and to identify crucial motifs within AP-FXIII. RESULTS Variants with deletions longer than the first 10 amino acids and an R11Q point mutant were not expressed as proteins. In silico calculations indicated that the sequence (8) FGGR(12) R plays a substantial role in intersubunit interactions in FXIII-A2 homodimers. In agreement with this prediction, the temperature stability of delN-FXIII variants decreased with increasing length of deletion. These results may suggest a role of the N-terminus of AP-FXIII in dimer stability. Substantial sequence homology was found among activation peptides of vertebrate and even invertebrate (crustacean) FXIII-A orthologs, which further supports our conclusion. CONCLUSIONS We conclude that deletion of 11 or more N-terminal amino acids disrupts intersubunit interactions, which may prevent FXIII-A2 homodimer formation. Therefore, AP-FXIII plays an important role in the stability of the FXIII-A2 dimer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

S. Schiffer

Relevância:

20.00% 20.00%

Publicador:

Resumo:

S. Schiffer