961 resultados para Nuclear saline water conversion plants
Resumo:
Solid oxide fuel cells (SOFCs) are promising devices for stationary and portable power and heat generation, because they can use complex fuels such as hydro-carbons, CO, and alcohols. Extreme, non-equilibrium conditions and high tem-peratures (≥ 700 ˚C) required for SOFC operation hamper efforts to understand the mechanisms of component degradation in SOFCs. This talk focuses on new insights into SOFC chemistry and the conversion of carbon-containing fuels (both hydrocarbons and oxygenated) into electricity, carbon dioxide and water, gleaned from a combination of techniques including electrochemical impedance spectroscopy, voltammetry, and vibrational Raman scattering.
Resumo:
Although hypoalbuminaemia after injury may result from increased vascular permeability, dilution secondary to crystalloid infusions may contribute significantly. In this double-blind crossover study, the effects of bolus infusions of crystalloids on serum albumin, haematocrit, serum and urinary biochemistry and bioelectrical impedance analysis were measured in healthy subjects. Ten male volunteers received 2-litre infusions of 0.9% (w/v) saline or 5% (w/v) dextrose over 1 h; infusions were carried out on separate occasions, in random order. Weight, haemoglobin, serum albumin, serum and urinary biochemistry and bioelectrical impedance were measured pre-infusion and hourly for 6 h. The serum albumin concentration fell in all subjects (20% after saline; 16% after dextrose) by more than could be explained by dilution alone. This fall lasted more than 6 h after saline infusion, but values had returned to baseline 1 h after the end of the dextrose infusion. Changes in haematocrit and haemoglobin were less pronounced (7.5% after saline; 6.5% after dextrose). Whereas all the water from dextrose was excreted by 2 h after completion of the infusion, only one-third of the sodium and water from the saline had been excreted by 6 h, explaining its persistent diluting effect. Impedances rose after dextrose and fell after saline (P<0.001). Subjects voided more urine (means 1663 and 563 ml respectively) of lower osmolality (means 129 and 630 mOsm/kg respectively) and sodium content (means 26 and 95 mmol respectively) after dextrose than after saline (P<0.001). While an excess water load is excreted rapidly, an excess sodium load is excreted very slowly, even in normal subjects, and causes persistent dilution of haematocrit and serum albumin. The greater than expected change in serum albumin concentration when compared with that of haemoglobin suggests that, while dilution is responsible for the latter, redistribution also has a role in the former. Changes in bioelectrical impedance may reflect the electrolyte content rather than the volume of the infusate, and may be unreliable for clinical purposes.
Resumo:
Peatlands are widely exploited archives of paleoenvironmental change. We developed and compared multiple transfer functions to infer peatland depth to the water table (DWT) and pH based on testate amoeba (percentages, or presence/absence), bryophyte presence/absence, and vascular plant presence/absence data from sub-alpine peatlands in the SE Swiss Alps in order to 1) compare the performance of single-proxy vs. multi-proxy models and 2) assess the performance of presence/absence models. Bootstrapping cross-validation showing the best performing single-proxy transfer functions for both DWT and pH were those based on bryophytes. The best performing transfer functions overall for DWT were those based on combined testate amoebae percentages, bryophytes and vascular plants; and, for pH, those based on testate amoebae and bryophytes. The comparison of DWT and pH inferred from testate amoeba percentages and presence/absence data showed similar general patterns but differences in the magnitude and timing of some shifts. These results show new directions for paleoenvironmental research, 1) suggesting that it is possible to build good-performing transfer functions using presence/absence data, although with some loss of accuracy, and 2) supporting the idea that multi-proxy inference models may improve paleoecological reconstruction. The performance of multi-proxy and single-proxy transfer functions should be further compared in paleoecological data.
Resumo:
UV filters belong to a group of compounds that are used by humans and are present in municipal waste-waters, effluents from sewage treatment plants and surface waters. Current information regarding UV filters and their effects on fish is limited. In this study, the occurrence of three commonly used UV filters - 2-phenylbenzimidazole-5-sulfonic acid (PBSA), 2-hydroxy-4-methoxybenzophenone (benzophenone-3, BP-3) and 5-benzoyl-4-hydroxy-2-methoxy-benzenesulfonic acid (benzophenone-4, BP-4) - in South Bohemia (Czech Republic) surface waters is presented. PBSA concentrations (up to 13μgL(-1)) were significantly greater than BP-3 or BP-4 concentrations (up to 620 and 390ngL(-1), respectively). On the basis of these results, PBSA was selected for use in a toxicity test utilizing the common model organism rainbow trout (Oncorhynchus mykiss). Fish were exposed to three concentrations of PBSA (1, 10 and 1000µgL(-1)) for 21 and 42 days. The PBSA concentrations in the fish plasma, liver and kidneys were elevated after 21 and 42 days of exposure. PBSA increased activity of certain P450 cytochromes. Exposure to PBSA also changed various biochemical parameters and enzyme activities in the fish plasma. However, no pathological changes were obvious in the liver or gonads.
Resumo:
Continental evaporation is a significant and dynamic flux within the atmospheric water budget, but few methods provide robust observational constraints on the large-scale hydroclimatological and hydroecological impacts of this ‘recycled-water' flux. We demonstrate a geospatial analysis that provides such information, using stable isotope data to map the distribution of recycled water in shallow aquifers downwind from Lake Michigan. The δ2H and δ18O values of groundwater in the study region decrease from south to north, as expected based on meridional gradients in climate and precipitation isotope ratios. In contrast, deuterium excess (d = δ2H − 8 × δ18O) values exhibit a significant zonal gradient and finer-scale spatially patterned variation. Local d maxima occur in the northwest and southwest corners of the Lower Peninsula of Michigan, where ‘lake-effect' precipitation events are abundant. We apply a published model that describes the effect of recycling from lakes on atmospheric vapor d values to estimate that up to 32% of recharge into individual aquifers may be derived from recycled Lake Michigan water. Applying the model to geostatistical surfaces representing mean d values, we estimate that between 10% and 18% of the vapor evaporated from Lake Michigan is re-precipitated within downwind areas of the Lake Michigan drainage basin. Our approach provides previously unavailable observational constraints on regional land-atmosphere water fluxes in the Great Lakes Basin and elucidates patterns in recycled-water fluxes that may influence the biogeography of the region. As new instruments and networks facilitate enhanced spatial monitoring of environmental water isotopes, similar analyses can be widely applied to calibrate and validate water cycle models and improve projections of regional hydroecological change involving the coupled lake-atmosphere-land system. Read More: http://www.esajournals.org/doi/abs/10.1890/ES12-00062.1
Resumo:
Recently divergent species that can hybridize are ideal models for investigating the genetic exchanges that can occur while preserving the species boundaries. Petunia exserta is an endemic species from a very limited and specific area that grows exclusively in rocky shelters. These shaded spots are an inhospitable habitat for all other Petunia species, including the closely related and widely distributed species P. axillaris. Individuals with intermediate morphologic characteristics have been found near the rocky shelters and were believed to be putative hybrids between P. exserta and P. axillaris, suggesting a situation where Petunia exserta is losing its genetic identity. In the current study, we analyzed the plastid intergenic spacers trnS/trnG and trnH/psbA and six nuclear CAPS markers in a large sampling design of both species to understand the evolutionary process occurring in this biological system. Bayesian clustering methods, cpDNA haplotype networks, genetic diversity statistics, and coalescence-based analyses support a scenario where hybridization occurs while two genetic clusters corresponding to two species are maintained. Our results reinforce the importance of coupling differentially inherited markers with an extensive geographic sample to assess the evolutionary dynamics of recently diverged species that can hybridize. (C) 2013 Elsevier Inc. All rights reserved.
Resumo:
Three archived core samples from boreholes DGR-4, DGR-5 and DGR-6 from the Salina F Unit, Queenston Formation and the Georgian Bay Formation were subjected to squeezing tests at pressures of up to 500 MPa. Two samples did not yield any water, while a total of 0.88 g pore water was obtained from a clay-rich sample from the Blue Mountain Formation (water content = 2.8 wt.%, porosity = 8 %). This water mass was sufficient for a full chemical and water-isotope analysis – the first direct determination of pore-water composition in rocks from the DGR boreholes. The results are generally in reasonable agreement with those of independent methods, or the observed differences can be explained. Ancillary investigations included the determination of water content, densities and mineralogy, aqueous extraction of squeezed cores, and SEM investigations to characterise the microtexture of unsqueezed and squeezed rock materials. It is concluded that squeezing is a promising method of pore-water extraction and characterisation and is recommended as an alternative method for future studies. Selection criteria for potentially squeezable samples include high clay-mineral content (correlating in a high water content) and low carbonate content (low stiffness, limited cementation). Potential artefacts of the method, such as ion filtration or pressure solution, should be explored and quantified in future efforts.
Resumo:
RATIONALELow-budget rain collectors for water isotope analysis, such as the `ball-in-funnel type collector' (BiFC), are widely used in studies on stable water isotopes of rain. To date, however, an experimental quality assessment of such devices in relation to climatic factors does not exist. METHODSWe used Cavity Ring-Down Spectrometry (CRDS) to quantify the effects of evaporation on the O-18 values of reference water under controlled conditions as a function of the elapsed time between rainfall and collection for isotope analysis, the sample volume and the relative humidity (RH: 31% and 67%; 25 degrees C). The climate chamber conditions were chosen to reflect the warm and dry end of field conditions that favor evaporative enrichment (EE). We also tested the performance of the BiFC in the field, and compared our H-2/O-18 data obtained by isotope ratio mass spectrometry (IRMS) with those from the Swiss National Network for the Observation of Isotopes in the Water Cycle (ISOT). RESULTSThe EE increased with time, with a 1 increase in the O-18 values after 10days (RH: 25%; 25 degrees C; 35mL (corresponding to a 5mm rain event); p <0.001). The sample volume strongly affected the EE (max. value +1.5 parts per thousand for 7mL samples (i.e., 1mm rain events) after 72h at 31% and 67% RH; p <0.001), whereas the relative humidity had no significant effect. Using the BiFC in the field, we obtained very tight relationships of the H-2/O-18 values (r(2) 0.95) for three sites along an elevational gradient, not significantly different from that of the next ISOT station. CONCLUSIONSSince the chosen experimental conditions were extreme compared with the field conditions, it was concluded that the BiFC is a highly reliable and inexpensive collector of rainwater for isotope analysis. Copyright (c) 2014 John Wiley & Sons, Ltd.
Resumo:
The oxygen isotopic composition of precipitation (δ18Oprec) is well known to be a valuable (paleo-)climate proxy. Paleosols and sediments and hemicelluloses therein have the potential to serve as archives recording the isotopic composition of paleoprecipitation. In a companion paper (Zech et al., 2014) we investigated δ18Ohemicellulose values of plants grown under different climatic conditions in a climate chamber experiment. Here we present results of compound-specific δ18O analyses of arabinose, fucose and xylose extracted from modern topsoils (n = 56) along a large humid-arid climate transect in Argentina in order to answer the question whether hemicellulose biomarkers in soils reflect δ18Oprec. The results from the field replications indicate that the homogeneity of topsoils with regard to δ18Ohemicellulose is very high for most of the 20 sampling sites. Standard deviations for the field replications are 1.5‰, 2.2‰ and 1.7‰, for arabinose, fucose and xylose, respectively. Furthermore, all three hemicellulose biomarkers reveal systematic and similar trends along the climate gradient. However, the δ18Ohemicellulose values (mean of the three sugars) do not correlate positively with δ18Oprec (r = −0.54, p < 0.014, n = 20). By using a Péclet-modified Craig-Gordon (PMCG) model it can be shown that the δ18Ohemicellulose values correlate highly significantly with modeled δ18Oleaf water values (r = 0.81, p < 0.001, n = 20). This finding suggests that hemicellulose biomarkers in (paleo-)soils do not simply reflect δ18Oprec but rather δ18Oprec altered by evaporative 18O enrichment of leaf water due to evapotranspiration. According to the modeling results, evaporative 18O enrichment of leaf water is relatively low (∼10‰) in the humid northern part of the Argentinian transect and much higher (up to 19‰) in the arid middle and southern part of the transect. Model sensitivity tests corroborate that changes in relative air humidity exert a dominant control on evaporative 18O enrichment of leaf water and thus δ18Ohemicellulose, whereas the effect of temperature changes is of minor importance. While oxygen exchange and degradation effects seem to be negligible, further factors needing consideration when interpreting δ18Ohemicellulose values obtained from (paleo-)soils are evaporative 18O enrichment of soil water, seasonality effects, wind effects and in case of abundant stem/root-derived organic matter input a partial loss of the evaporative 18O enrichment of leaf water. Overall, our results prove that compound-specific δ18O analyses of hemicellulose biomarkers in soils and sediments are a promising tool for paleoclimate research. However, disentangling the two major factors influencing δ18Ohemicellulose, namely δ18Oprec and relative air humidity controlled evaporative 18O enrichment of leaf water, is challenging based on δ18O analyses alone.
Resumo:
Grassland is an important ecosystem type which is not only used agriculturally, but also covers sites which cannot be used for other purposes, e.g. in very steep locations or above timberlines. Prolonged summer droughts in the mid-term future, as are predicted for Central Europe, are expected to have a major impact on such ecosystems. To address this topic, rainfall exclusion via shelters was performed on three grassland sites at different altitudes (393, 982 and 1978 m above sea level) in Switzerland. Diurnal drought treatment effects were studied at each study site on a completely sunny day towards the end of an 8–10 week shelter period. Ecophysiological parameters including gas exchange (An, gs and intrinsic WUE) and chlorophyll a fluorescence (Fv/Fm, ΦPSII and NPQ) were considered for several species. The lowland and the Alpine field site were more strongly affected by soil drought than the pre-Alpine site. At all sites, grasses showed different patterns of reductions in stomatal conductance under soil drought compared to legumes and forbs. In addition, grasses were significantly more affected by reductions in assimilation rates at all sites. Time courses of reductions in assimilation rates relative to controls differed between species at the Alpine site, as some species showed reduced assimilation rates at this site in the early morning. Thus, similar rainfall exclusion treatments can trigger different reactions in various species at different sites, which might not become obvious during mere midday measurements. Overall, results suggest strong impacts of prolonged summer drought on grassland net photosynthesis especially at the Alpine site and, within sites, for grasses
Resumo:
Herbivore-induced systemic resistance occurs in many plants and is commonly assumed to be adaptive. The mechanisms triggered by leaf-herbivores that lead to systemic resistance are largely understood, but it remains unknown how and why root herbivory also increases resistance in leaves. To resolve this, we investigated the mechanism by which the root herbivore Diabrotica virgifera induces resistance against lepidopteran herbivores in the leaves of Zea mays. Diabrotica virgifera infested plants suffered less aboveground herbivory in the field and showed reduced growth of Spodoptera littoralis caterpillars in the laboratory. Root herbivory did not lead to a jasmonate-dependent response in the leaves, but specifically triggered water loss and abscisic acid (ABA) accumulation. The induction of ABA by itself was partly responsible for the induction of leaf defenses, but not for the resistance against S. littoralis. Root-herbivore induced hydraulic changes in the leaves, however, were crucial for the increase in insect resistance. We conclude that the induced leaf resistance after root feeding is the result of hydraulic changes, which reduce the quality of the leaves for chewing herbivores. This finding calls into question whether root-herbivore induced leaf-resistance is an evolved response. © The Authors (2010). Journal compilation © New Phytologist Trust (2010).
Resumo:
Tree water deficit estimated by measuring water-related changes in stem radius (DeltaW) was compared with tree water deficit estimated from the output of a simple, physiologically reasonable model (DeltaW(E)), with soil water potential (Psi(soil)) and atmospheric vapor pressure deficit (VPD) as inputs. Values of DeltaW were determined by monitoring stem radius changes with dendrometers and detrending the results for growth, We followed changes in DeltaW and DeltaW(E) in Pinus sylvestris L. and Quercus pubescens Willd. over 2 years at a dry site (2001-2002; Salgesch, Wallis) and in Picea abies (L.) Karst. for 1 year at a wet site (1998; Davos, Graubuenden) in the Swiss Alps. The seasonal courses of DeltaW in deciduous species and in conifers at the same site were similar and could be largely explained by variation in DeltaW(E). This finding strongly suggests that DeltaW, despite the known species-specific differences in stomatal response to microclimate, is mainly explained by a combination of atmospheric and soil conditions. Consequently, we concluded that trees are unable to maintain any particular DeltaW. Either Psi(soil) or VPD alone provided poorer estimates of AWthan a model incorporating both factors. As a first approximation of DeltaW(E), Psi(soil) can be weighted so that the negative mean Psi(soil) reaches 65 to 75% of the positive mean daytime VPD over a season (Q. pubescens: similar to65%, P abies: similar to70%, P sylvestris: similar to75%). The differences in DeltaW among species can be partially explained by a different weighting of Psi(soil) against VPD. The DeltaW of P. sylvestris was more dependent on Psi(soil) than that of Q. pubescens, but less than that of P. abies, and was less dependent on VPD than that of P. abies and Q. pubescens. The model worked well for P. abies at the wet site and for Q. pubescens and P. sylvestris at the dry site, and may be useful for estimating water deficit in other tree species.
Resumo:
Introduction: Drought is one of the most significant factors that limit plant productivity. Oxidative stress is a secondary event in many unfavorable environmental conditions. Intracellular proteases have a role in the metabolism reorganisation and nutrient remobilization under stress. In order to under stand the relative significance of oxidative stress and proteolysis in the yield reduction under drought, four varieties of Triticum aestivum L. with different field drought resistance were examined. Methods: A two-year field experiment was conducted. Analyses were performed on the upper most leaf of control plants and plants under water deficitat the stages most critical for yield reduction under drought (from jointing till milk ripeness). Leaf water deficit and electrolyte leakage, malondyaldehyde level, activities and isoenzymes of superoxide dismutase, catalase and peroxidase, leaf protein content and proteolytic activity were studied. Yield components were analyzed. Results: A general trend of increasing the membrane in stability and accumulation of lipid hydroperoxides was observed with some differences among varieties, especially under drought. The anti-oxidative enzyme activities were progressively enhanced, as well as the azocaseinolytic activities. The leaf protein content decreased under drought at the last phase. Differences among varieties were observed in the parameters under study. They were compared to yield components` reduction under water deprivation.
Resumo:
This study aimed at analysing the hydrological changes in the Lake Kivu Basin over the last seven decades with focus on the response of the lake water level to meteorological factors and hydropower dam construction. Historical precipitation and lake water levels were acquired from literature, local agencies and from global databases in order to compile a coherent dataset. The net lake inflow was modelled using a soil water balance model and the water levels were reconstructed using a parsimonious lake water balance model. The soil water balance shows that 370 mm yr−1 (25%) of the precipitation in the catchment contributes to the runoff and baseflow whereas 1100 mm yr−1 (75%) contributes to the evapotranspiration. A review of the lake water balance resulted in the following estimates of hydrological contributions: 55%, 25%, and 20% of the overall inputs from precipitation, surface inflows, and subaquatic groundwater discharge, respectively. The overall losses were 58% and 42% for lake surface evaporation and outflow discharge, respectively. The hydrological model used indicated a remarkable sensitivity of the lake water levels to hydrometeorological variability up to 1977, when the outflow bed was artificially widened.