999 resultados para Nuclear migration


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An analytical model for bacterial accumulation in a discrete fractllre has been developed. The transport and accumlllation processes incorporate into the model include advection, dispersion, rate-limited adsorption, rate-limited desorption, irreversible adsorption, attachment, detachment, growth and first order decay botl1 in sorbed and aqueous phases. An analytical solution in Laplace space is derived and nlln1erically inverted. The model is implemented in the code BIOFRAC vvhich is written in Fortran 99. The model is derived for two phases, Phase I, where adsorption-desorption are dominant, and Phase II, where attachment-detachment are dominant. Phase I ends yvhen enollgh bacteria to fully cover the substratllm have accllillulated. The model for Phase I vvas verified by comparing to the Ogata-Banks solution and the model for Phase II was verified by comparing to a nonHomogenous version of the Ogata-Banks solution. After verification, a sensitiv"ity analysis on the inpllt parameters was performed. The sensitivity analysis was condllcted by varying one inpllt parameter vvhile all others were fixed and observing the impact on the shape of the clirve describing bacterial concentration verSllS time. Increasing fracture apertllre allovvs more transport and thus more accllffilliation, "Vvhich diminishes the dllration of Phase I. The larger the bacteria size, the faster the sllbstratum will be covered. Increasing adsorption rate, was observed to increase the dllration of Phase I. Contrary to the aSSllmption ofllniform biofilm thickness, the accllffilliation starts frOll1 the inlet, and the bacterial concentration in aqlleous phase moving towards the olitiet declines, sloyving the accumulation at the outlet. Increasing the desorption rate, redllces the dliration of Phase I, speeding IIp the accllmlilation. It was also observed that Phase II is of longer duration than Phase I. Increasing the attachment rate lengthens the accliffililation period. High rates of detachment speeds up the transport. The grovvth and decay rates have no significant effect on transport, althollgh increases the concentrations in both aqueous and sorbed phases are observed. Irreversible adsorption can stop accllillulation completely if the vallIes are high.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This essay reviews the decision-making process that led to India exploding a nuclear device in May, 1974. An examination of the Analytic, Cybernetic and Cognitive Theories of decision, will enable a greater understanding of the events that led up to the 1974 test. While each theory is seen to be only partially useful, it is only by synthesising the three theories that a comprehensive account of the 1974 test can be given. To achieve this analysis, literature on decision-making in national security issues is reviewed, as well as the domestic and international environment in which involved decisionmakers operated. Finally, the rationale for the test in 1974 is examined. The conclusion revealed is that the explosion of a nuclear device by India in 1974 was primarily related to improving Indian international prestige among Third World countries and uniting a rapidly disintegrating Indian societal consensus. In themselves, individual decision-making theories were found to be of little use, but a combination of the various elements allowed a greater comprehension of the events leading up to the test than might otherwise have been the case.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The gypsy moth, Lymantria dispar, a major defoliator of broad leaf trees, was accidentally introduced into North America in 1869. Much interest has been generated regarding the potential of using natural pathogens for biological control of this insect. One of these pathogens, a highly specific fungus, Entomophaga maimaiga, was accredited with causing major epizootics in populations of gypsy moth across the north-eastern United States in 1989 and 1990 and is thought to be spreading northwards into Canada. This study examined gypsy moth population densities in the Niagara Region. The fungus, .E.. maimaiga, was artificially introduced into one site and the resulting mortality in host populations was noted over two years. The relationship between fungal mortality, host population density and occurrence of another pathogen, the nuclear polyhedrosis virus (NPV), was assessed. Gypsy moth population density was assessed by counting egg masses in 0.01 hectare (ha) study plots in six areas, namely Louth, Queenston, Niagara-on-the-Lake, Shorthills Provincial Park, Chippawa Creek and Willoughby Marsh. High variability in density was seen among sites. Willoughby Marsh and Chippawa Creek, the sites with the greatest variability, were selected for more intensive study. The pathogenicity of E. maimaiga was established in laboratory trials. Fungal-infected gypsy moth larvae were then released into experimental plots of varying host density in Willoughby Marsh in 1992. These larvae served as the inoculum to infect field larvae. Other larvae were injected with culture medium only and released into control plots also of varying host density. Later, field larvae were collected and assessed for the presence of .E.. maimaiga and NPV. A greater proportion of larvae were infected from experimental plots than from control plots indicating that the experimental augmentation had been successful. There was no relationship between host density and the proportion of infected larvae in either experimental or control plots. In 1992, 86% of larvae were positive for NPV. Presence and intensity of NPV infection was independent of fungal presence, plot type or interaction of these two factors. Sampling was carried out in the summer of 1993, the year after the introduction, to evaluate the persistence of the pathogen in the environment. Almost 50% of all larvae were infected with the fungus. There was no difference between control and experimental plots. Data collected from Willoughby Marsh indicated that there was no correlation between the proportion of larvae infected with the fungus and host population density in either experimental or control plots. About 10% of larvae collected from a nearby site, Chippawa Creek, were also positive for .E.. maimaiga suggesting that low levels of .E.. maimaiga probably occurred naturally in the area. In 1993, 9.6% of larvae were positive for NPV. Again, presence or absence of NPV infection was independent of fungal presence plot type or interaction of these two factors. In conclusion, gypsy moth population densities were highly variable between and within sites in the Niagara Region. The introduction of the pathogenic fungus, .E.. maimaiga, into Willoughby Marsh in 1992 was successful and the fungus was again evident in 1993. There was no evidence for existence of a relationship between fungal mortality and gypsy moth density or occurrence of NPV. The results from this study are discussed with respect to the use of .E.. maimaiga in gypsy moth management programs.