938 resultados para Nonword repetition
Resumo:
Time after time… and aspect and mood. Over the last twenty five years, the study of time, aspect and - to a lesser extent - mood acquisition has enjoyed increasing popularity and a constant widening of its scope. In such a teeming field, what can be the contribution of this book? We believe that it is unique in several respects. First, this volume encompasses studies from different theoretical frameworks: functionalism vs generativism or function-based vs form-based approaches. It also brings together various sub-fields (first and second language acquisition, child and adult acquisition, bilingualism) that tend to evolve in parallel rather than learn from each other. A further originality is that it focuses on a wide range of typologically different languages, and features less studied languages such as Korean and Bulgarian. Finally, the book gathers some well-established scholars, young researchers, and even research students, in a rich inter-generational exchange, that ensures the survival but also the renewal and the refreshment of the discipline. The book at a glance The first part of the volume is devoted to the study of child language acquisition in monolingual, impaired and bilingual acquisition, while the second part focuses on adult learners. In this section, we will provide an overview of each chapter. The first study by Aviya Hacohen explores the acquisition of compositional telicity in Hebrew L1. Her psycholinguistic approach contributes valuable data to refine theoretical accounts. Through an innovating methodology, she gathers information from adults and children on the influence of definiteness, number, and the mass vs countable distinction on the constitution of a telic interpretation of the verb phrase. She notices that the notion of definiteness is mastered by children as young as 10, while the mass/count distinction does not appear before 10;7. However, this does not entail an adult-like use of telicity. She therefore concludes that beyond definiteness and noun type, pragmatics may play an important role in the derivation of Hebrew compositional telicity. For the second chapter we move from a Semitic language to a Slavic one. Milena Kuehnast focuses on the acquisition of negative imperatives in Bulgarian, a form that presents the specificity of being grammatical only with the imperfective form of the verb. The study examines how 40 Bulgarian children distributed in two age-groups (15 between 2;11-3;11, and 25 between 4;00 and 5;00) develop with respect to the acquisition of imperfective viewpoints, and the use of imperfective morphology. It shows an evolution in the recourse to expression of force in the use of negative imperatives, as well as the influence of morphological complexity on the successful production of forms. With Yi-An Lin’s study, we concentrate both on another type of informant and of framework. Indeed, he studies the production of children suffering from Specific Language Impairment (SLI), a developmental language disorder the causes of which exclude cognitive impairment, psycho-emotional disturbance, and motor-articulatory disorders. Using the Leonard corpus in CLAN, Lin aims to test two competing accounts of SLI (the Agreement and Tense Omission Model [ATOM] and his own Phonetic Form Deficit Model [PFDM]) that conflicts on the role attributed to spellout in the impairment. Spellout is the point at which the Computational System for Human Language (CHL) passes over the most recently derived part of the derivation to the interface components, Phonetic Form (PF) and Logical Form (LF). ATOM claims that SLI sufferers have a deficit in their syntactic representation while PFDM suggests that the problem only occurs at the spellout level. After studying the corpus from the point of view of tense / agreement marking, case marking, argument-movement and auxiliary inversion, Lin finds further support for his model. Olga Gupol, Susan Rohstein and Sharon Armon-Lotem’s chapter offers a welcome bridge between child language acquisition and multilingualism. Their study explores the influence of intensive exposure to L2 Hebrew on the development of L1 Russian tense and aspect morphology through an elicited narrative. Their informants are 40 Russian-Hebrew sequential bilingual children distributed in two age groups 4;0 – 4;11 and 7;0 - 8;0. They come to the conclusion that bilingual children anchor their narratives in perfective like monolinguals. However, while aware of grammatical aspect, bilinguals lack the full form-function mapping and tend to overgeneralize the imperfective on the principles of simplicity (as imperfective are the least morphologically marked forms), universality (as it covers more functions) and interference. Rafael Salaberry opens the second section on foreign language learners. In his contribution, he reflects on the difficulty L2 learners of Spanish encounter when it comes to distinguishing between iterativity (conveyed with the use of the preterite) and habituality (expressed through the imperfect). He examines in turn the theoretical views that see, on the one hand, habituality as part of grammatical knowledge and iterativity as pragmatic knowledge, and on the other hand both habituality and iterativity as grammatical knowledge. He comes to the conclusion that the use of preterite as a default past tense marker may explain the impoverished system of aspectual distinctions, not only at beginners but also at advanced levels, which may indicate that the system is differentially represented among L1 and L2 speakers. Acquiring the vast array of functions conveyed by a form is therefore no mean feat, as confirmed by the next study. Based on the prototype theory, Kathleen Bardovi-Harlig’s chapter focuses on the development of the progressive in L2 English. It opens with an overview of the functions of the progressive in English. Then, a review of acquisition research on the progressive in English and other languages is provided. The bulk of the chapter reports on a longitudinal study of 16 learners of L2 English and shows how their use of the progressive expands from the prototypical uses of process and continuousness to the less prototypical uses of repetition and future. The study concludes that the progressive spreads in interlanguage in accordance with prototype accounts. However, it suggests additional stages, not predicted by the Aspect Hypothesis, in the development from activities and accomplishments at least for the meaning of repeatedness. A similar theoretical framework is adopted in the following chapter, but it deals with a lesser studied language. Hyun-Jin Kim revisits the claims of the Aspect Hypothesis in relation to the acquisition of L2 Korean by two L1 English learners. Inspired by studies on L2 Japanese, she focuses on the emergence and spread of the past / perfective marker ¬–ess- and the progressive – ko iss- in the interlanguage of her informants throughout their third and fourth semesters of study. The data collected through six sessions of conversational interviews and picture description tasks seem to support the Aspect Hypothesis. Indeed learners show a strong association between past tense and accomplishments / achievements at the start and a gradual extension to other types; a limited use of past / perfective marker with states and an affinity of progressive with activities / accomplishments and later achievements. In addition, - ko iss– moves from progressive to resultative in the specific category of Korean verbs meaning wear / carry. While the previous contributions focus on function, Evgeniya Sergeeva and Jean-Pierre Chevrot’s is interested in form. The authors explore the acquisition of verbal morphology in L2 French by 30 instructed native speakers of Russian distributed in a low and high levels. They use an elicitation task for verbs with different models of stem alternation and study how token frequency and base forms influence stem selection. The analysis shows that frequency affects correct production, especially among learners with high proficiency. As for substitution errors, it appears that forms with a simple structure are systematically more frequent than the target form they replace. When a complex form serves as a substitute, it is more frequent only when it is replacing another complex form. As regards the use of base forms, the 3rd person singular of the present – and to some extent the infinitive – play this role in the corpus. The authors therefore conclude that the processing of surface forms can be influenced positively or negatively by the frequency of the target forms and of other competing stems, and by the proximity of the target stem to a base form. Finally, Martin Howard’s contribution takes up the challenge of focusing on the poorer relation of the TAM system. On the basis of L2 French data obtained through sociolinguistic interviews, he studies the expression of futurity, conditional and subjunctive in three groups of university learners with classroom teaching only (two or three years of university teaching) or with a mixture of classroom teaching and naturalistic exposure (2 years at University + 1 year abroad). An analysis of relative frequencies leads him to suggest a continuum of use going from futurate present to conditional with past hypothetic conditional clauses in si, which needs to be confirmed by further studies. Acknowledgements The present volume was inspired by the conference Acquisition of Tense – Aspect – Mood in First and Second Language held on 9th and 10th February 2008 at Aston University (Birmingham, UK) where over 40 delegates from four continents and over a dozen countries met for lively and enjoyable discussions. This collection of papers was double peer-reviewed by an international scientific committee made of Kathleen Bardovi-Harlig (Indiana University), Christine Bozier (Lund Universitet), Alex Housen (Vrije Universiteit Brussel), Martin Howard (University College Cork), Florence Myles (Newcastle University), Urszula Paprocka (Catholic University of Lublin), †Clive Perdue (Université Paris 8), Michel Pierrard (Vrije Universiteit Brussel), Rafael Salaberry (University of Texas at Austin), Suzanne Schlyter (Lund Universitet), Richard Towell (Salford University), and Daniel Véronique (Université d’Aix-en-Provence). We are very much indebted to that scientific committee for their insightful input at each step of the project. We are also thankful for the financial support of the Association for French Language Studies through its workshop grant, and to the Aston Modern Languages Research Foundation for funding the proofreading of the manuscript.
Resumo:
We demonstrate mode-locking and single-pulse generation in fibre laser with record-setting cavity length of 25 km. Substantial increase in the pulse round trip duration leads to ultra-low repetition rate of 8.097 kHz and pulse energy of 3.7 uJ.
Resumo:
We measured the optical linewidths of a passively mode-locked quantum dot laser and show that, in agreement with theoretical predictions, the modal linewidth exhibits a parabolic dependence with the mode optical frequency. The minimum linewidth follows a Schawlow-Townes behavior with a rebroadening at high power. In addition, the slope of the parabola is proportional to the RF linewidth of the laser and can therefore provide a direct measurement of the timing jitter. Such a measurement could be easily applied to mode-locked semiconductor lasers with a fast repetition rate where the RF linewidth cannot be directly measured.
Resumo:
The development of new all-optical technologies for data processing and signal manipulation is a field of growing importance with a strong potential for numerous applications in diverse areas of modern science. Nonlinear phenomena occurring in optical fibres have many attractive features and great, but not yet fully explored, potential in signal processing. Here, we review recent progress on the use of fibre nonlinearities for the generation and shaping of optical pulses and on the applications of advanced pulse shapes in all-optical signal processing. Amongst other topics, we will discuss ultrahigh repetition rate pulse sources, the generation of parabolic shaped pulses in active and passive fibres, the generation of pulses with triangular temporal profiles, and coherent supercontinuum sources. The signal processing applications will span optical regeneration, linear distortion compensation, optical decision at the receiver in optical communication systems, spectral and temporal signal doubling, and frequency conversion. © Copyright 2012 Sonia Boscolo and Christophe Finot.
Resumo:
In this scheme, nonlinearity and dispersion in the NDF lead to various reshaping processes of an initial, conventional pulse according to the chirping value and power level at the input of the fibre. In particular, we have observed that triangular-shaped pulses can be generated for sufficiently high energies and a positive initial chirp parameter. In our experiments, 2.8 ps-FWHM, transform-limited pulses generated from a mode-locked fibre laser source at a repetition rate of 1.25 GHz were pre-chirped by propagating the pulses through different lengths of standard mono-mode fibre. The chirped pulses were then amplified to different power levels before being launched into a 2.3 km section of True Wave fibre (TWF). The corresponding numerically calculated pulse temporal intensity profile and numerical and experimental second-harmonic generation frequency-resolved optical gating (SHG FROG) spectrograms were also derived. In conclusion, we have presented numerical modelling results which show the system design parameters required for the generation of triangular-shaped pulses in a nonlinear NDF, and experimentally demonstrated triangular pulse shaping in conventional NDF.
Resumo:
Nonlinear phenomena occurring in optical fibres have many attractive features and great, but not yet fully explored potential in signal processing. Here, we review recent progress on the use of fibre nonlinearities for the generation and shaping of optical pulses, and on the applications of advanced pulse waveforms in all-optical signal processing. Among other topics, we will discuss ultrahigh repetition-rate pulse sources, the generation of parabolic-shaped pulses in active and passive fibres, the generation of pulses with triangular temporal profiles, and coherent supercontinuum sources. The signal processing applications will span optical regeneration, linear distortion compensation, optical decision at the receiver in optical communication systems, spectral and temporal signal doubling, and frequency conversion. © 2012 IEEE.
Resumo:
We propose the design of a novel ?-shaped fiber laser resonator and apply it to build a long-cavity normaldispersion mode-locked Er-fiber laser which features enhanced functionalities for management and optimization of pulsed lasing regimes. We report the generation of sub-nanosecond pulses with the energy of ~0.5 µJ at a kilohertz-scale repetition rate in an all-fiber system based on the new laser design. A combination of special design solutions in the laser, such as polarization instability compensation in the ultra-long arm of the resonator, intra-cavity spectral selection of radiation with a broadband fiber Bragg grating, and polarization selection by means of a tilted refractive index grating, ensures low amplified spontaneous emission (ASE) noise and high stability of the laser system output parameters.
Resumo:
A flexible method for fabricating shallow optical waveguides by using femtosecond laser writing of patterns on a metal coated glass substrate followed by ion-exchange is described. This overcomes the drawbacks of low index contrast and high induced stress in waveguides directly written using low-repetition rate ultrafast laser systems. When compared to conventional lithography, the technique is simpler and has advantages in terms of flexibility in the types of structures which can be fabricated.
Resumo:
The use of high intensity femtosecond laser sources for inscribing fibre gratings has attained significant interest. The principal advantage of high-energy pulses is their ability for grating inscription in any material type without preprocessing or special core doping. In the field of fibre optical sensing LPGs written in photonic crystal fibre have a distinct advantage of low temperature sensitivity over gratings written in conventional fibre and thus minimal temperature cross-sensitivity. Previous studies have indicated that LPGs written by a point-by-point inscription scheme using a low repetition femtosecond laser exhibit post-fabrication evolution leading to temporal instabilities at room temperatures with respect to spectral location, strength and birefringence of the attenuation bands. These spectral instabilities of LPGs are studied in photonic crystal fibres (endlessly single mode microstructure fibre) to moderately high temperatures 100°C to 200°C and their performance compared to fusion-arc fabricated LPG. Initial results suggest that the fusion-arc fabricated LPG demonstrate less spectral instability for a given constant and moderate temperature, and are similar to the results obtained when inscribed in a standard single mode fibre.
Resumo:
Recent results on direct femtosecond inscription of straight low-loss waveguides in borosilicate glass are presented. We also demonstrate lowest ever losses in curvilinear waveguides, which we use as main building blocks for integrated photonics circuits. Low-loss waveguides are of great importance to a variety of applications of integrated optics. We report on recent results of direct femtosecond fabrication of smooth low-loss waveguides in standard optical glass by means of femtosecond chirped-pulse oscillator only (Scientific XL, Femtolasers), operating at the repetition rate of 11 MHz, at the wavelength of 800 nm, with FWHM pulse duration of about 50 fs, and a spectral widths of 30 nm. The pulse energy on target was up to 70 nJ. In transverse inscription geometry, we inscribed waveguides at the depth from 10 to 300 micrometers beneath the surface in the samples of 50 x 50 x 1 mm dimensions made of pure BK7 borosilicate glass. The translation of the samples accomplished by 2D air-bearing stage (Aerotech) with sub-micrometer precision at a speed of up to 100 mm per second (hardware limit). Third direction of translation (Z-, along the inscribing beam or perpendicular to sample plane) allows truly 3D structures to be fabricated. The waveguides were characterized in terms of induced refractive index contrast, their dimensions and cross-sections, mode-field profiles, total insertion losses at both 633 nm and 1550 nm. There was almost no dependence on polarization for the laser inscription. The experimental conditions – depth, laser polarization, pulse energy, translation speed and others, were optimized for minimum insertion losses when coupled to a standard optical fibre SMF-28. We found coincidence of our optimal inscription conditions with recently published by other groups [1, 3] despite significant difference in practically all experimental parameters. Using optimum regime for straight waveguides fabrication, we inscribed a set of curvilinear tracks, which were arranged in a way to ensure the same propagation length (and thus losses) and coupling conditions, while radii of curvature varied from 3 to 10 mm. This allowed us to measure bend-losses – they less than or about 1 dB/cm at R=10 mm radius of curvature. We also demonstrate a possibility to fabricate periodical perturbations of the refractive index in such waveguides with the periods using the same set-up. We demonstrated periods of about 520 nm, which allowed us to fabricate wavelength-selective devices using the same set-up. This diversity as well as very short time for inscription (the optimum translation speed was found to be 40 mm/sec) makes our approach attractive for industrial applications, for example, in next generation high-speed telecom networks.
Resumo:
A series of LPGs was inscribed in photonic crystal fibre by a low repetition femtosecond laser system. When subjected to bending they were found to be spectrally sensitive to bend orientation and displayed a strong polarisation dependence.
Resumo:
The recent expansion of clinical applications for optical coherence tomography (OCT) is driving the development of approaches for consistent image acquisition. There is a simultaneous need for time-stable, easy-to-use imaging targets for calibration and standardization of OCT devices. We present calibration targets consisting of three-dimensional structures etched into nanoparticle-embedded resin. Spherical iron oxide nanoparticles with a predominant particle diameter of 400 nm were homogeneously dispersed in a two part polyurethane resin and allowed to harden overnight. These samples were then etched using a precision micromachining femtosecond laser with a center wavelength of 1026 nm, 100kHz repetition rate and 450 fs pulse duration. A series of lines in depth were etched, varying the percentage of inscription energy and speed of the translation stage moving the target with respect to the laser. Samples were imaged with a dual wavelength spectral-domain OCT system and point-spread function of nanoparticles within the target was measured.
Resumo:
A nonlinear polarization rotation based all-fiber passively mode-locked Tm3+-doped fiber laser is demonstrated by using a 45° tilted fiber grating (TFG) as an in-line polarizer. Stable soliton pulses centered at 1992.7 nm with 2.02 nm FWHM bandwidth were produced at a repetition rate of 1.902 MHz with pulse duration of 2.2 ps and pulse energy of 74.6 pJ. With the increased pump power, the laser also can operate at noise-like regime with 18.1 nm FWHM bandwidth and pulse energy of up to 250.1 nJ. Using the same 45° TFG, both stable soliton and noise-like mode-locking centered at ∼1970 nm and ∼2050 nm, were also achieved by shortening and extending the length of Tm3+-doped fiber, respectively, exhibiting advantages of broadband and low insertion loss at 2 μm band.
Resumo:
We report an all-fiber mode-locked erbium-doped fiber laser (EDFL) employing carbon nanotube (CNT) polymer composite film. By using only standard telecom grade components, without any complex polarization control elements in the laser cavity, we have demonstrated polarization locked vector solitons generation with duration of ~583fs , average power of ~3 mW (pulse energy of 118pJ ) at the repetition rate of ~25.7 MHz.
Resumo:
A passively switched Ho3+, Pr3+ codoped fluoride fiber laser using a semiconductor saturable absorber mirror (SESAM) is demonstrated. Q-switching and partial mode-locking were observed with the output power produced at a slope efficiency of 24% with respect to the absorbed pump power. The partially mode-locked 2.87 µm pulses operated at a repetition rate of 27.1 MHz with an average power of 132 mW, pulse energy of 4.9 nJ, and pulse width of 24 ps.