959 resultados para Newtonian equations
Resumo:
This paper is concerned with the existence of multi-bump solutions to a class of quasilinear Schrodinger equations in R. The proof relies on variational methods and combines some arguments given by del Pino and Felmer, Ding and Tanaka, and Sere.
Resumo:
In this paper we discuss the existence of mild and classical solutions for a class of abstract non-autonomous neutral functional differential equations. An application to partial neutral differential equations is considered.
Resumo:
In this paper we introduce a new class of abstract integral equations which enables us to study in a unified manner several different types of differential equations. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Despite the fact that the integral form of the equations of classical electrodynamics is well known, the same is not true for non-Abelian gauge theories. The aim of the present paper is threefold. First, we present the integral form of the classical Yang-Mills equations in the presence of sources and then use it to solve the long-standing problem of constructing conserved charges, for any field configuration, which are invariant under general gauge transformations and not only under transformations that go to a constant at spatial infinity. The construction is based on concepts in loop spaces and on a generalization of the non-Abelian Stokes theorem for two-form connections. The third goal of the paper is to present the integral form of the self-dual Yang-Mills equations and calculate the conserved charges associated with them. The charges are explicitly evaluated for the cases of monopoles, dyons, instantons and merons, and we show that in many cases those charges must be quantized. Our results are important in the understanding of global properties of non-Abelian gauge theories.
Resumo:
There is no consensus regarding the accuracy of bioimpedance for the determination of body composition in older persons. This study aimed to compare the assessment of lean body mass of healthy older volunteers obtained by the deuterium dilution method (reference) with those obtained by two frequently used bioelectrical impedance formulas and one formula specifically developed for a Latin-American population. A cross-sectional study. Twenty one volunteers were studied, 12 women, with mean age 72 +/- 6.7 years. Urban community, Ribeiro Preto, Brazil. Fat free mass was determined, simultaneously, by the deuterium dilution method and bioelectrical impedance; results were compared. In bioelectrical impedance, body composition was calculated by the formulas of Deuremberg, Lukaski and Bolonchuck and Valencia et al. Lean body mass of the studied volunteers, as determined by bioelectrical impedance was 37.8 +/- 9.2 kg by the application of the Lukaski e Bolonchuk formula, 37.4 +/- 9.3 kg (Deuremberg) and 43.2 +/- 8.9 kg (Valencia et. al.). The results were significantly correlated to those obtained by the deuterium dilution method (41.6 +/- 9.3 Kg), with r=0.963, 0.932 and 0.971, respectively. Lean body mass obtained by the Valencia formula was the most accurate. In this study, lean body mass of older persons obtained by the bioelectrical impedance method showed good correlation with the values obtained by the deuterium dilution method. The formula of Valencia et al., developed for a Latin-American population, showed the best accuracy.
Resumo:
We obtain boundedness and asymptotic behavior of solutions for semilinear functional difference equations with infinite delay. Applications to Volterra difference equations with infinite delay are shown. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The modern GPUs are well suited for intensive computational tasks and massive parallel computation. Sparse matrix multiplication and linear triangular solver are the most important and heavily used kernels in scientific computation, and several challenges in developing a high performance kernel with the two modules is investigated. The main interest it to solve linear systems derived from the elliptic equations with triangular elements. The resulting linear system has a symmetric positive definite matrix. The sparse matrix is stored in the compressed sparse row (CSR) format. It is proposed a CUDA algorithm to execute the matrix vector multiplication using directly the CSR format. A dependence tree algorithm is used to determine which variables the linear triangular solver can determine in parallel. To increase the number of the parallel threads, a coloring graph algorithm is implemented to reorder the mesh numbering in a pre-processing phase. The proposed method is compared with parallel and serial available libraries. The results show that the proposed method improves the computation cost of the matrix vector multiplication. The pre-processing associated with the triangular solver needs to be executed just once in the proposed method. The conjugate gradient method was implemented and showed similar convergence rate for all the compared methods. The proposed method showed significant smaller execution time.
Resumo:
Using a mathematical approach accessible to graduate students of physics and engineering, we show how solitons are solutions of nonlinear Schrödinger equations. Are also given references about the history of solitons in general, their fundamental properties and how they have found applications in optics and fiber-optic communications.
Resumo:
[EN] The purpose of this paper is to present a fixed point theorem for generalized contractions in partially ordered complete metric spaces. We also present an application to first-order ordinary differential equations.
Resumo:
[EN] In this work, we present a new model for a dense disparity estimation and the 3-D geometry reconstruction using a color image stereo pair. First, we present a brief introduction to the 3-D Geometry of a camera system. Next, we propose a new model for the disparity estimation based on an energy functional. We look for the local minima of the energy using the associate Euler-Langrage partial differential equations. This model is a generalization to color image of the model developed in, with some changes in the strategy to avoid the irrelevant local minima. We present some numerical experiences of 3-D reconstruction, using this method some real stereo pairs.
Resumo:
Two analytical models are proposed to describe two different mechanisms of lava tubes formation. A first model is introduced to describe the development of a solid crust in the central region of the channel, and the formation of a tube when crust widens until it reaches the leve\'es. The Newtonian assumption is considered and the steady state Navier- Stokes equation in a rectangular conduit is solved. A constant heat flux density assigned at the upper flow surface resumes the combined effects of two thermal processes: radiation and convection into the atmosphere. Advective terms are also included, by the introduction of velocity into the expression of temperature. Velocity is calculated as an average value over the channel width, so that lateral variations of temperature are neglected. As long as the upper flow surface cools, a solid layer develops, described as a plastic body, having a resistance to shear deformation. If the applied shear stress exceeds this resistance, crust breaks, otherwise, solid fragments present at the flow surface can weld together forming a continuous roof, as it happens in the sidewall flow regions. Variations of channel width, ground slope and effusion rate are analyzed, as parameters that strongly affect the shear stress values. Crust growing is favored when the channel widens, and tube formation is possible when the ground slope or the effusion rate reduce. A comparison of results is successfully made with data obtained from the analysis of pictures of actual flows. The second model describes the formation of a stable, well defined crust along both channel sides, their growing towards the center and their welding to form the tube roof. The fluid motion is described as in the model above. Thermal budget takes into account conduction into the atmosphere, and advection is included considering the velocity depending both on depth and channel width. The solidified crust has a non uniform thickness along the channel width. Stresses acting on the crust are calculated using the equations of the elastic thin plate, pinned at its ends. The model allows to calculate the distance where crust thickness is able to resist the drag of the underlying fluid and to sustain its weight by itself, and the level of the fluid can lower below the tube roof. Viscosity and thermal conductivity have been experimentally investigated through the use of a rotational viscosimeter. Analyzing samples coming from Mount Etna (2002) the following results have been obtained: the fluid is Newtonian and the thermal conductivity is constant in a range of temperature above the liquidus. For lower temperature, the fluid becomes non homogeneous, and the used experimental techniques are not able to detect any properties, because measurements are not reproducible.
Resumo:
Until recently the debate on the ontology of spacetime had only a philosophical significance, since, from a physical point of view, General Relativity has been made "immune" to the consequences of the "Hole Argument" simply by reducing the subject to the assertion that solutions of Einstein equations which are mathematically different and related by an active diffeomorfism are physically equivalent. From a technical point of view, the natural reading of the consequences of the "Hole Argument” has always been to go further and say that the mathematical representation of spacetime in General Relativity inevitably contains a “superfluous structure” brought to light by the gauge freedom of the theory. This position of apparent split between the philosophical outcome and the physical one has been corrected thanks to a meticulous and complicated formal analysis of the theory in a fundamental and recent (2006) work by Luca Lusanna and Massimo Pauri entitled “Explaining Leibniz equivalence as difference of non-inertial appearances: dis-solution of the Hole Argument and physical individuation of point-events”. The main result of this article is that of having shown how, from a physical point of view, point-events of Einstein empty spacetime, in a particular class of models considered by them, are literally identifiable with the autonomous degrees of freedom of the gravitational field (the Dirac observables, DO). In the light of philosophical considerations based on realism assumptions of the theories and entities, the two authors then conclude by saying that spacetime point-events have a degree of "weak objectivity", since they, depending on a NIF (non-inertial frame), unlike the points of the homogeneous newtonian space, are plunged in a rich and complex non-local holistic structure provided by the “ontic part” of the metric field. Therefore according to the complex structure of spacetime that General Relativity highlights and within the declared limits of a methodology based on a Galilean scientific representation, we can certainly assert that spacetime has got "elements of reality", but the inevitably relational elements that are in the physical detection of point-events in the vacuum of matter (highlighted by the “ontic part” of the metric field, the DO) are closely dependent on the choice of the global spatiotemporal laboratory where the dynamics is expressed (NIF). According to the two authors, a peculiar kind of structuralism takes shape: the point structuralism, with common features both of the absolutist and substantival tradition and of the relationalist one. The intention of this thesis is that of proposing a method of approaching the problem that is, at least at the beginning, independent from the previous ones, that is to propose an approach based on the possibility of describing the gravitational field at three distinct levels. In other words, keeping the results achieved by the work of Lusanna and Pauri in mind and following their underlying philosophical assumptions, we intend to partially converge to their structuralist approach, but starting from what we believe is the "foundational peculiarity" of General Relativity, which is that characteristic inherent in the elements that constitute its formal structure: its essentially geometric nature as a theory considered regardless of the empirical necessity of the measure theory. Observing the theory of General Relativity from this perspective, we can find a "triple modality" for describing the gravitational field that is essentially based on a geometric interpretation of the spacetime structure. The gravitational field is now "visible" no longer in terms of its autonomous degrees of freedom (the DO), which, in fact, do not have a tensorial and, therefore, nor geometric nature, but it is analyzable through three levels: a first one, called the potential level (which the theory identifies with the components of the metric tensor), a second one, known as the connections level (which in the theory determine the forces acting on the mass and, as such, offer a level of description related to the one that the newtonian gravitation provides in terms of components of the gravitational field) and, finally, a third level, that of the Riemann tensor, which is peculiar to General Relativity only. Focusing from the beginning on what is called the "third level" seems to present immediately a first advantage: to lead directly to a description of spacetime properties in terms of gauge-invariant quantites, which allows to "short circuit" the long path that, in the treatises analyzed, leads to identify the "ontic part” of the metric field. It is then shown how to this last level it is possible to establish a “primitive level of objectivity” of spacetime in terms of the effects that matter exercises in extended domains of spacetime geometrical structure; these effects are described by invariants of the Riemann tensor, in particular of its irreducible part: the Weyl tensor. The convergence towards the affirmation by Lusanna and Pauri that the existence of a holistic, non-local and relational structure from which the properties quantitatively identified of point-events depend (in addition to their own intrinsic detection), even if it is obtained from different considerations, is realized, in our opinion, in the assignment of a crucial role to the degree of curvature of spacetime that is defined by the Weyl tensor even in the case of empty spacetimes (as in the analysis conducted by Lusanna and Pauri). In the end, matter, regarded as the physical counterpart of spacetime curvature, whose expression is the Weyl tensor, changes the value of this tensor even in spacetimes without matter. In this way, going back to the approach of Lusanna and Pauri, it affects the DOs evolution and, consequently, the physical identification of point-events (as our authors claim). In conclusion, we think that it is possible to see the holistic, relational, and non-local structure of spacetime also through the "behavior" of the Weyl tensor in terms of the Riemann tensor. This "behavior" that leads to geometrical effects of curvature is characterized from the beginning by the fact that it concerns extensive domains of the manifold (although it should be pointed out that the values of the Weyl tensor change from point to point) by virtue of the fact that the action of matter elsewhere indefinitely acts. Finally, we think that the characteristic relationality of spacetime structure should be identified in this "primitive level of organization" of spacetime.
Resumo:
This work concerns the study of bounded solutions to elliptic nonlinear equations with fractional diffusion. More precisely, the aim of this thesis is to investigate some open questions related to a conjecture of De Giorgi about the one-dimensional symmetry of bounded monotone solutions in all space, at least up to dimension 8. This property on 1-D symmetry of monotone solutions for fractional equations was known in dimension n=2. The question remained open for n>2. In this work we establish new sharp energy estimates and one-dimensional symmetry property in dimension 3 for certain solutions of fractional equations. Moreover we study a particular type of solutions, called saddle-shaped solutions, which are the candidates to be global minimizers not one-dimensional in dimensions bigger or equal than 8. This is an open problem and it is expected to be true from the classical theory of minimal surfaces.