905 resultados para Neutron Reflection
Resumo:
Integrable Kondo impurities in the one-dimensional supersymmetric U model of strongly correlated electrons are studied by means of the boundary graded quantum inverse scattering method. The boundary K-matrices depending on the local magnetic moments of the impurities are presented as non-trivial realizations of the reflection equation algebras in an impurity Hilbert space. Furthermore, the model Hamiltonian is diagonalized and the Bethe ansatz equations are derived. It is interesting to note that our model exhibits a free parameter in the bulk Hamiltonian but no free parameter exists on the boundaries. This is in sharp contrast to the impurity models arising from the supersymmetric t-J and extended Hubbard models where there is no free parameter in the bulk but there is a free parameter on each boundary.
Resumo:
University teaching is a diverse enterprise which encompasses a range of disciplines, cirricula, teaching methods, learning tasks and learning approaches. Within this diversity, common themes and issues which reflect academics' understanding of effective teaching may be discerned. Drawing on written data collected from 708 practising teachers who were nominated by their Heads or Deans as exhibiting exemplary teaching practice, and from interviews conducted with 44 of these, a number of these themes and issues are identified and illustrated The findings offer insights which may stimulate further reflection on, and discussion of, the quality of teaching in higher education.
Resumo:
An integrable Kondo problem in the one-dimensional supersymmetric extended Hubbard model is studied by means of the boundary graded quantum inverse scattering method. The boundary K-matrices depending on the local moments of the impurities are presented as a non-trivial realization of the graded reflection equation algebras in a two-dimensional impurity Hilbert space. Further, the model is solved by using the algebraic Bethe ansatz method and the Bethe ansatz equations are obtained.
Resumo:
The crystal structures of the Tutton salts (NH4)(2)[Cu(H2O)(6)](SO4)(2), diammonium hexaaquacopper disulfate, formed with normal water and isotopically substituted (H2O)-O-18, have been determined by X-ray diffraction at 9.5 K and are very similar, with Cu-O(7) the longest of the Cu-O bonds of the Jahn-Teller distorted octahedral [Cu(H2O)(6)](2+) complex. It is known that structural differences accompany deuteration of (NH4)(2)[Cu(H2O)(6)](SO4)(2), the most dramatic of which is a switch to Cu-O(8) as the longest such bond. The present result suggests that the structural differences are associated with hydrogen-bonding effects rather than with increased mass of the water ligands affecting the Jahn-Teller coupling. The Jahn-Teller distortions and hydrogen-bonding contacts in the compounds are compared with those reported for other Tutton salts at ambient and high pressure.
Resumo:
Three kinds of integrable Kondo problems in one-dimensional extended Hubbard models are studied by means of the boundary graded quantum inverse scattering method. The boundary K matrices depending on the local moments of the impurities are presented as a nontrivial realization of the graded reflection equation algebras acting in a (2s alpha + 1)-dimensional impurity Hilbert space. Furthermore, these models are solved using the algebraic Bethe ansatz method, and the Bethe ansatz equations are obtained.
Resumo:
The primary purpose of this study was to estimate the magnitude and variability of peak calcium accretion rates in the skeletons of healthy white adolescents. Total-body bone mineral content (BMC) was measured annually on six occasions by dual-energy X-ray absorptiometry (DXA; Hologic 2000, array mode), a BMC velocity curve was generated for each child by a cubic spline fit, and peak accretion rates were determined. Anthropometric measures were collected every 6 months and a 24-h dietary recall was recorded two to three times per year. Of the 113 boys and 115 girls initially enrolled in the study, 60 boys and 53 girls who had peak height velocity (PHV) and peak BMC velocity values were used in this longitudinal analysis. When the individual BR IC velocity curves were aligned on the age of peak bone mineral velocity, the resulting mean peak bone mineral accrual rate was 407 g/year for boys (SD, 92 g/year; range, 226-651 g/year) and 322 g/year for girls (SD, 66 g/year; range, 194-520 g/year). Using 32.2% as the fraction of calcium in bone mineral, as determined by neutron activation analysis (Ellis et al., J Bone Miner Res 1996;11:843-848), these corresponded to peak calcium accretion rates of 359 mg/day for boys (81 mg/day; 199-574 mg/day) and 284 mg/day for girls (58 mg/day; 171-459 mg/day). These longitudinal results are 27-34% higher than our previous cross-sectional analysis in which we reported mean values of 282 mg/day for boys and 212 mg/day for girls (Martin et al., Am J Clin Nutr 1997;66:611-615). Mean age of peak calcium accretion was 14.0 years for the boys (1.0 years; 12.0-15.9 years), and 12.5 years for the girls (0.9 years; 10.5-14.6 years). Dietary calcium intake, determined as the mean of all assessments up to the age of peak accretion was 1140 mg/day (SD, 392 mg/day) for boys and 1113 mg/day (SD, 378 mg/day) for girls. We estimate that 26% of adult calcium is laid down during the 2 adolescent years of peak skeletal growth. This period of rapid growth requires high accretion rates of calcium, achieved in part by increased retention efficiency of dietary calcium.
Resumo:
This paper reviews research examining the link between cannabis use and educational attainment among youth. Cross-sectional studies have revealed significant associations between cannabis use and a range of measures of educational performance including lower grade point average, less satisfaction with school, negative attitudes to school, increased rates of school absenteeism and poor school performance. However, results of cross-sectional studies cannot be used to determine whether cannabis use causes poor educational performance, poor educational performance is a cause of cannabis use or whether both outcomes are a reflection of common risk factors. Nonetheless, a number of prospective longitudinal studies have indicated that early cannabis use may significantly increase risks of subsequent poor school performance and, in particular, early school leaving. This association has remained after control for a wide range of prospectively assessed covariates. Possible mechanisms underlying an association between early cannabis use and educational attainment include the possibility that cannabis use induces an 'amotivational syndrome' or that cannabis use causes cognitive impairment. However, there appears to be relatively little empirical support for these hypotheses. It is proposed that the link between early cannabis use and educational attainment arises because of the social context within which cannabis is used. In particular, early cannabis use appears to be associated with the adoption of an anti-conventional lifestyle characterized by affiliations with delinquent and substance using peers, and the precocious adoption of adult roles including early school leaving, leaving the parental home and early parenthood.
Resumo:
I shall discuss the quantum and classical dynamics of a class of nonlinear Hamiltonian systems. The discussion will be restricted to systems with one degree of freedom. Such systems cannot exhibit chaos, unless the Hamiltonians are time dependent. Thus we shall consider systems with a potential function that has a higher than quadratic dependence on the position and, furthermore, we shall allow the potential function to be a periodic function of time. This is the simplest class of Hamiltonian system that can exhibit chaotic dynamics. I shall show how such systems can be realized in atom optics, where very cord atoms interact with optical dipole potentials of a far-off resonance laser. Such systems are ideal for quantum chaos studies as (i) the energy of the atom is small and action scales are of the order of Planck's constant, (ii) the systems are almost perfectly isolated from the decohering effects of the environment and (iii) optical methods enable exquisite time dependent control of the mechanical potentials seen by the atoms.
Resumo:
Integrable Kondo impurities in two cases of one-dimensional q-deformed t-J models are studied by means of the boundary Z(2)-graded quantum inverse scattering method. The boundary K matrices depending on the local magnetic moments of the impurities are presented as nontrivial realizations of the reflection equation algebras in an impurity Hilbert space. Furthermore, these models are solved by using the algebraic Bethe ansatz method and the Bethe ansatz equations are obtained.
Resumo:
The Jordan-Wigner fermionization for the one-dimensional Bariev model of three coupled XY chains is formulated. The L-matrix in terms of fermion operators and the R-matrix are presented explicitly. Furthermore, the graded reflection equations and their solutions are discussed.
Resumo:
Visual pigments, the molecules in photoreceptors that initiate the process of vision, are inherently dichroic, differentially absorbing light according to its axis of polarization. Many animals have taken advantage of this property to build receptor systems capable of analyzing the polarization of incoming light, as polarized light is abundant in natural scenes (commonly being produced by scattering or reflection). Such polarization sensitivity has long been associated with behavioral tasks like orientation or navigation. However, only recently have we become aware that it can be incorporated into a high-level visual perception akin to color vision, permitting segmentation of a viewed scene into regions that differ in their polarization. By analogy to color vision, we call this capacity polarization vision. It is apparently used for tasks like those that color vision specializes in: contrast enhancement, camouflage breaking, object recognition, and signal detection and discrimination. While color is very useful in terrestrial or shallow-water environments, it is an unreliable cue deeper in water due to the spectral modification of light as it travels through water of various depths or of varying optical quality. Here, polarization vision has special utility and consequently has evolved in numerous marine species, as well as at least one terrestrial animal. In this review, we consider recent findings concerning polarization vision and its significance in biological signaling.
Resumo:
A glycosylphosphatidylinositol (GPI)-anchored enzyme (rat osseous plate alkaline phosphatase-OAP) was studied as monolayer (pure and mixed with lipids) at the air-water interface. Surface pressure and surface potential-area isotherms showed that the enzyme forms a stable monolayer and exhibits a liquid-expanded state even at surface pressure as high as 30 mN m(-1). Isotherms for mixed dimyristoylphosphatidic acid (DMPA)-OAP monolayer showed the absence of a liquid-expanded/liquid-condensed phase transition as observed for pure DMPA monolayer. In both cases, pure or mixed monolayer, the enzyme preserves its native conformation under compression at the air-water interface as observed from in situ p-polarized light Fourier transform-infrared reflection-absorption spectroscopic (FT-IRRAS) measurements. Changes in orientation and conformation of the enzyme due to the presence or absence of DMPA, as well as due to the surface compression, are discussed. (C) 2008 Published by Elsevier Inc.
Resumo:
There are times when people feel compelled to stand up and articulate their group's shortcomings, an act that carries with it enormous social risks. Indeed, a mechanistic reading of social identity theory might lead one to believe that ingroup critics are doomed to face hostility because they are attacking a fundamental part of people's self-concept. But often ingroup critics are doing more than attacking their group — they are trying to incite positive change. Criticism is the cornerstone of protest, and it is difficult to imagine how a group can be reinvigorated, reinvented, or reformed without some process of critical self-reflection. Thus, although the ingroup critic might create tension within the group, it is possible that internal criticism could be seen by other group members as beneficial in terms of promoting positive change and stimulating innovation, creativity, and flexibility in decision making. In this talk I examine the 'identity rules' that ingroup critics need to follow to avoid defensiveness, and look at empirical evidence of how factors such as language, the intergroup context, and choice of audience shape people's attributions regarding criticism and their subsequent evaluations of critics.
Resumo:
The `reflexive thinking` concept is discussed in this article as a means of contextualizing John Dewey`s intellectual legacy. `Reflection` represents a fundamental element for the construction of the necessary competences to information seeking and use, and consequently to individual and collective development. Since the reflexive thinking habit in information literacy is a way of learning, some questions concerning teaching and learning processes are also investigated. The discussion is, therefore, supported by the supposition that reflexive thinking is a cognitive strategy that allows a deeper comprehension of related problems, phenomena, and processes by means of the perception of the relations and the identification of involved elements, as well as the analysis and interpretation of meanings, empowering the information literacy process.
Resumo:
This work attempts to discuss, in the light of the French Analysis of the Discourse, how the concept of memory and heterogeneity in language actions can contribute to a reflection on information and documentation studies. Starting from cuttings of Clarice Lispector - the hour of the star exhibition pamphlet, accomplished in the second semester of 2007 by the Portuguese Language Museum (Luz train station, Sao Paulo), we interpreted the several voices that surround and sustain the subject and the sense.