969 resultados para Neutral Re(I) complexes
Resumo:
Several cis-dioxomolybdenum complexes of two tridentate ONS chelating ligands H2L1 and H2L2 ( obtained by condensation of S-benzyl and S-methyl dithiocarbazates with 2-hydroxyacetophenone) have been prepared and characterized. Complexes 1 and 2 are found to be of the form MoO2 (CH3OH)L-1.CH3OH and MoO2L, respectively, (where L2-=dianion of H2L1 and H2L2). The sixth coordination site of the complexes acts as a binding site for various neutral monodentate Lewis bases, B, forming complexes 3 - 10 of the type MoO2LB (where B=gamma-picoline, imidazole, thiophene, THF). The complexes were characterized by elemental analyses, various spectroscopic techniques, ( UV-Vis, IR and H-1 NMR), measurement of magnetic susceptibility at room temperature, molar conductivity in solution and by cyclic voltammetry. Two of the complexes MoO2(CH3OH)L-1.CH3OH (1) and MoO2L1(imz) (5) were structurally characterized by single crystal X-ray diffraction. Oxo abstruction reactions of 1 and 5 led to formation of oxomolybdenum(IV) complex of the MoOL type.
Resumo:
The reaction of FcCOC1 (Fc = (C5H5) Fe(C5H4)) with benzimidazole or imidazole in 1: 1 ratio gives the ferrocenyl derivatives FcCO(benzim) (L1) or FcCO(im) (L2), respectively. Two molecules of L1 or L2 can replace two nitrile ligands in [Mo(eta(3)-C3H5)( CO)(2)(CH3CN)(2)Br] or [Mo(eta(3)-C5H5O)(CO)(2)(CH3CN)(2)Br] leading to the new trinuclear complexes [Mo(eta(3)-C3H5)(CO)(2)(L)(2)Br] (C1 for L = L1; C3 for L = L2) and [Mo(eta(3)-C5H5O)(CO)(2)(L)(2)Br] (C-2 for L = L1; C4 for L = L2) with L1 and L2 acting as N-monodentade ligands. L1, L2 and C2 were characterized by X-ray diffraction studies. [Mo(eta(3)-C5H5O)(CO) 2(L1)(2)Br] was shown to be a trinuclear species, with the two L1 molecules occupying one equatorial and one axial position in the coordination sphere of Mo(II). Cyclic voltammetric studies were performed for the two ligands L1 and L2, as well as for their molybdenum complexes, and kinetic and thermodynamic data for the corresponding redox processes obtained. In agreement with the nature of the frontier orbitals obtained from DFT calculations, L1 and L2 exhibit one oxidation process at the Fe(II) center, while C1, C3, and C4 display another oxidation wave at lower potentials, associated with the oxidation of Mo(II). (C) 2007 Elsevier B. V. All rights reserved.
Resumo:
The synthesis, characterisation, X-ray single crystal structures and magnetic properties of three new basal-apical mu(2)-1,1-azide-bridged complexes [(CuLN3)-N-1](2) (1), [(CuLN3)-N-2](2) (2) and [(CuLN3)-N-3](2) (3) with very similar tridentate Schiff-base blocking ligands {HL1 = N-[2-(ethylamino) ethyl] salicylaldimine; HL2 = 7-(ethylamino)-4-methyl-5-azahept-3-en-2-one; HL3 = 7-amino-4-methyl-5-azaoct-3-en-2-one} have been reported [complex 1: monoclinic, P2(1)/c, a = 8.390(2), b = 7.512(2), c = 19.822(6) Angstrom, beta = 91.45(5)degrees; complex 2: monoclinic, P2(1)/c, a = 8.070(9), b = 9.787(12), c = 15.743(17) A, beta = 98.467(10)degrees; complex 3: monoclinic, P2(1)/n, a = 5.884(7), b = 16.147(18), c = 11.901(12) Angstrom, beta = 90.050(10)degrees]. The structures consist of neutral dinuclear entities resulting from the pairing of two mononuclear units through end-on azide bridges connecting an equatorial position of one copper centre to an axial position of the other, The copper ions adopt a (4+1) square-based geometry in all the complexes. In complex 2, there is no inter-dimer hydrogen-bonding. However, complexes 1 and 3 form two different supramolecular structures in which the dinuclear entities are linked by H-bonds giving one-dimensional systems. Variable temperature (300-2 K) magnetic-susceptibility measurements and magnetisation measurements at 2 K reveal that all three complexes have antiferromagnetic coupling. Magneto-structural correlations have been made taking into consideration both the azido bridging ligands and the existence of intermolecular hydrogen bonds. ((C) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2004).
Resumo:
Two tridentate Schiff bases, HL1(6-amino-3-methyl-1-phenyl-4-azahex-2-en-1-one), and HL2 (6-atnino-3,6-dimethyl-1-phenyl-4-azahex-2-en-1-one) on reaction with Cu(II) perchlorate in the presence of triethyl amine yielded two new trinuclear copper(II) complexes, [(CuL1)(3)(mu(3)-OH)](ClO4)(2) (1) and [(CuL2)(3)(mu(3)-OH)](ClO4)(2) center dot 0.75H(2)O (2), whereas another tridentate ligand HL3 (7-amino-3-methyl-1-phenyl-4-azahept-2-en-1-one) underwent hydrolysis under the same reaction conditions to result in the formation of a mononuclear complex, [Cu(bn)(pn)ClO4] (3) [where bn = 1-benzoylacetonate and pn = 1,3-propanediamine]. All three complexes have been characterized by X-ray crystallography. For both 1 and 2 the cationic part is trinuclear with a [Cu3OH] core held by three carbonyl oxygen bridges between each pair of copper(II) atoms. The structure of 3 is a monomer with a chelating 1,3-propanediamine and a benzoyl acetone moiety. Magnetic measurements of I and 2 have been performed in the 2-300 K temperature range. The experimental data could be satisfactorily reproduced by using an isotropic exchange model, H = -J(S1S2 + S2S3 + S1S3), yielding as best fit parameters: J = -25.6 cm(-1), g = 2.21 for 1 and J = 11.2 cm(-1), g = 2.10 for 2. The EPR spectra at low temperature could be indicative of spin frustration in complex 1. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
New lanthanide complexes of 3-hydroxypicolinic acid (HpicOH) were prepared: [Ln(H2O)(picOH)(2)(mu-HpicO)].3H(2)O (Ln = Eu, Tb, Er). The complexes were characterized using photoluminescence, infrared, Raman, and H-1 NMR spectroscopy, and elemental analysis. The crystal structure of [Eu(H2O)(picOH)(2)(mu-HpicO)] . 3H(2)O 1 was determined by X-ray diffraction. Compound 1 crystallizes in a monoclinic system with space group P2(1)/c and cell parameters a = 9.105(13) Angstrom, b = 18.796(25) Angstrom, and c = 13.531(17) Angstrom, and beta = 104.86(1) deg. The 3-hydroxypicolinate ligands coordinate through both N,O- or O,O- chelation to the lanthanide ions, as shown by X-ray and spectroscopic results. Photoluminescence measurements were performed for the Eu(III) and Tb(III) complexes; the Eu(III) complex was investigated in more detail. The Eu(III) compound is highly luminescent and acts as a photoactive center in nanocomposite materials whose host matrixes are silica nanoparticles.
Resumo:
New lanthanide complexes of 2-hydroxynicotinic acid (H(2)nicO) [Ln(HnicO)(2)(mu-HnicO)(H2O)] (.) nH(2)O (Ln = Eu, Gd, Tb, Er, Tm) were prepared. The crystal structures of the [Tb(HnicO)(2)(g-HnicO)(H2O)] (.) 1.75H(2)O(1) and [Eu(HniCO)(2)(mu-HnicO)(H2O)] (.) 1.25H(2)O (2) complexes were determined by X-ray diffraction. The 2-hydroxynicotinate ligand coordinates through O,O-chelation to the lanthanide(III) ions as shown by X-ray diffraction and the infrared, Raman and NMR spectroscopy results. Photoluminescence measurements were performed for the Eu(III) and Tb(III) complexes. Lifetimes of 0.592 +/- 0.007 and 0.113 +/- 0.002 ms were determined for the Eu3+ and Tb3+ emitting states D-5(0) and D-5(4), respectively. A value around 30% was found for the D-5(0) quantum efficiency. The energy transfer mechanisms between the lanthanide ions and the ligands are discussed and compared with those observed in similar complexes involving the 3-hydroxypicolinate ligand based on the luminescence of the respective Gd3+-based complexes. (C) 2003 Published by Elsevier Ltd.
Resumo:
Reaction of the tridentate ONO Schiff-base ligand 2-hydroxybenzoylhydrazone of 2-hydroxybenzoylhydrazine (H2L) with VO(acac)(2) in ethanol medium produces the oxoethoxovanadium(V) complex [VO(OEt)L] (A), which reacts with pyridine to form [VO(OEt)L center dot(py)] (1). Complex 1 is structurally characterized. It has a distorted octahedral O4N2 coordination environment around the V(V) acceptor center. Both complexes A and 1 in ethanol medium react with neutral monodentate Lewis bases 2-picoline, 3-picoline, 4-picoline, 4-amino pyridine, imidazole, and 4-methyl imidazole, all of which are stronger bases than pyridine, to produce dioxovanadium(V) complexes of general formula BH[VO2L]. Most of these dioxo complexes are structurally characterized, and the complex anion [VO2L](-) is found to possess a distorted square pyramidal structure. When a solution/suspension of a BH[VO2L] complex in an alcohol (ROH) is treated with HCl in the same alcohol, it is converted into the corresponding monooxoalkoxo complex [ O(OR)L], where R comes from the alcohol used as the reaction medium. Both complexes A and 1 produce the 4,4'-bipyridine-bridged binuclear complex [VO(OEt)L](2)(mu-4,4'-bipy) (2), which, to the best of our knowledge, represents the first report of a structurally characterized 4,4'-bipyridine-bridged oxovanadium(V) binuclear complex. Two similar binuclear oxovanadium(V) complexes 3 and 4 are also synthesized and characterized. All these binuclear complexes (2-4), on treatment with base B, produce the corresponding mononuclear dioxovanadium(V) complexes (5-10).
Resumo:
Treatment of [Ir(bpa)(cod)](+) complex [1](+) with a strong base (e.g., tBuO(-)) led to unexpected double deprotonation to form the anionic [Ir-(bpa-2H)(cod)](-) species [3](-), via the mono-deprotonated neutral amido complex [Ir(bpa-H)(cod)] as an isolable intermediate. A certain degree of aromaticity of the obtained metal-chelate ring may explain the favourable double deprotonation. The rhodium analogue [4](-) was prepared in situ. The new species [M(bpa-2H)(cod)](-) (M = Rh, Ir) are best described as two-electron reduced analogues of the cationic imine complexes [M-I(cod)(Py-CH2-N=CH-Py)](+). One-electron oxidation of [3](-) and [4](-) produced the ligand radical complexes [3]* and [4]*. Oxygenation of [3](-) with O-2 gave the neutral carboxamido complex [Ir(cod)(py-CH2-N-CO-py)] via the ligand radical complex [3]* as a detectable intermediate.
Resumo:
Copper(l) complexes of 1:3 condensates of tris(2-aminoethyl)amine and p-X-benzaldehydes (X = K Cl, NMe2 and NO2) of the type [Cu(ligand)]ClO4 are synthesised. The X-ray crystal structures of the copper(l) complexes with X = K, Cl and NMe2 are determined. In these complexes copper(l) is found to have trigonal pyramidal N-4 coordination sphere with the apical N forming a longer bond (2.191-2.202 Angstrom) than the trigonal ones (2.003-2.026 Angstrom). The Cu(II/I) potentials in these complexes span a range of 0.71-0.90 V vs SCE increasing linearly with the resonance component of the Hammett sigma for the para substituent X. It is concluded that trigonal pyramidal geometry is destabilising for copper(II).
Resumo:
The effects of isoelectronic replacement of a neutral nitrogen donor atom by an anionic carbon atom in terpyridine ruthenium(II) complexes on the electronic and photophysical properties of the resulting N,C,N'- and C,N,N'-cyclometalated aryl ruthenium(II) complexes were investigated. To this end, a series of complexes was prepared either with ligands containing exclusively nitrogen donor atoms, that is, [Ru(R-1-tpy)(R-2-tpy)](2+) (R-1, R-2 = H, CO2Et), or bearing either one N,C,N'- or C,N,N'-cyclometalated ligand and one tpy ligand, that is, [Ru(R-1-(NCN)-C-Lambda-N-Lambda)(R-2-tpy)](+) and [Ru(R-1-(CNN)-N-Lambda-N-Lambda)(R-2-tpy)](+), respectively. Single-crystal X-ray structure determinations showed that cyclometalation does not significantly alter the overall geometry of the complexes but does change the bond lengths around the ruthenium(II) center, especially the nitrogen-to-ruthenium bond length trans to the carbanion. Substitution of either of the ligands with electron-withdrawing ester functionalities fine-tuned the electronic properties and resulted in the presence of an IR probe. Using trends obtained from redox potentials, emission energies, IR spectroelectrochemical responses, and the character of the lowest unoccupied molecular orbitals from DFT studies, it is shown that the first reduction process and luminescence are associated with the ester-substituted C,N,N'-cyclometalated ligand in [Ru(EtO2C-(CNN)-N-Lambda-N-Lambda)(tpy)](+). Cyclometalation in an N,C,N'-bonding motif changed the energetic order of the ruthenium d(zx), d(yz), and d(xy) orbitals. The red-shifted absorption in the N,C,N'-cyclometalated complexes is assigned to MLCT transitions to the tpy ligand. The red shift observed upon introduction of the ester moiety is associated with an increase in intensity of low-energy transitions, rather than a red shift of the main transition. Cyclometalation in the C,N,N'-binding motif also red-shifts the absorption, but the corresponding transition is associated with both ligand types. Luminescence of the cyclometalated complexes is relatively independent of the mode of cyclometalation, obeying the energy gap law within each individual series.
Resumo:
An overtly critical perspective on 're-engineering construction' is presented. It is contended that re-engineering is impossible to define in terms of its substantive content and is best understood as a rhetorical label. In recent years, the language of re-engineering has heavily shaped the construction research agenda. The declared goals are to lower costs and improve value for the customer. The discourse is persuasive because it reflects the ideology of the 'enterprise culture' and the associated rhetoric of customer responsiveness. Re-engineering is especially attractive to the construction industry because it reflects and reinforces the existing dominant way of thinking. The overriding tendency is to reduce organizational complexities to a mechanistic quest for efficiency. Labour is treated as a commodity. Within this context, the objectives of re-engineering become 'common sense'. Knowledge becomes subordinate to the dominant ideology of neo-liberalism. The accepted research agenda for re-engineering construction exacerbates the industry's problems and directly contributes to the casualization of the workforce. The continued adherence to machine metaphors by the construction industry's top management has directly contributed to the 'bad attitudes' and 'adversarial culture' that they repeatedly decry. Supposedly neutral topics such as pre-assembly, partnering, supply chain management and lean thinking serve only to justify the shift towards bogus labour-only subcontracting and the associated reduction of employment rights. The continued casualization of the workforce raises real questions about the industry's future capacity to deliver high-quality construction. In order to appear 'relevant' to the needs of industry, it seems that the research community is doomed to perpetuate this regressive cycle.
Resumo:
The high pressure liquid chromatography method for determination of glutathione in free and protein-bound forms was re-established and has successfully been developed to measure glutathione related thiol compounds, i.e. L-cysteine, gamma-L-glutamyl-L-cysteine and L-cysteinyl-L-glycine, in both free and protein-bound forms. The natural levels of those compounds in typical strong, weak flours, and flours from 36 wheat varieties grown in the UK were investigated. The total free and protein-bound glutathione compounds found in the 36 UK varieties was 358 +/- 51 and 190 +/- 17 nmol/g, respectively. Multiple correlation analysis did not show a clear-cut relationship between the natural level of glutathione and any related thiol compound in either free or protein-bound forms and flour quality attributes, including rheological properties, baking performance, protein content and SDS sedimentation test values. Therefore, it can be suggested that glutathione and related thiol compounds at natural levels do not lead to significant differences in the rheological properties of dough and the baking performance of flour. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
A poor representation of cloud structure in a general circulation model (GCM) is widely recognised as a potential source of error in the radiation budget. Here, we develop a new way of representing both horizontal and vertical cloud structure in a radiation scheme. This combines the ‘Tripleclouds’ parametrization, which introduces inhomogeneity by using two cloudy regions in each layer as opposed to one, each with different water content values, with ‘exponential-random’ overlap, in which clouds in adjacent layers are not overlapped maximally, but according to a vertical decorrelation scale. This paper, Part I of two, aims to parametrize the two effects such that they can be used in a GCM. To achieve this, we first review a number of studies for a globally applicable value of fractional standard deviation of water content for use in Tripleclouds. We obtain a value of 0.75 ± 0.18 from a variety of different types of observations, with no apparent dependence on cloud type or gridbox size. Then, through a second short review, we create a parametrization of decorrelation scale for use in exponential-random overlap, which varies the scale linearly with latitude from 2.9 km at the Equator to 0.4 km at the poles. When applied to radar data, both components are found to have radiative impacts capable of offsetting biases caused by cloud misrepresentation. Part II of this paper implements Tripleclouds and exponential-random overlap into a radiation code and examines both their individual and combined impacts on the global radiation budget using re-analysis data.
Resumo:
The introduction of ionic single-tailed surfactants to aqueous solutions of EO18BO10 [EO = poly(ethylene oxide), BO = poly(1,2-butylene oxide), subscripts denote the number of repeating units] leads to the formation of vesicles, as probed by laser scanning confocal microscopy. Dynamic light scattering showed that the dimensions of these aggregates at early stages of development do not depend on the sign of the surfactant head group charge. Small-angle X-ray scattering (SAXS) analysis indicated the coexistence of smaller micelles of different sizes and varying polymer content in solution. In strong contrast to the dramatic increase of size of dispersed particles induced by surfactants in dilute solution, the d-spacing of corresponding mesophases reduces monotonically upon increasing surfactant loading. This effect points to the suppression of vesicles as a consequence of increasing ionic strength in concentrated solutions. Maximum enhancements of storage modulus and thermal stability of hybrid gels take place at different compositions, indicating a delicate balance between the number and size of polymer-poor aggregates (population increases with surfactant loading) and the number and size of polymer−surfactant complexes (number and size decrease in high surfactant concentrations).
Resumo:
The complex [Ru(C&3bond; CC&3bond; N)(dppe)Cp*] (1) is readily obtained (ca. 70%) from the sequential reaction of [Ru(C=CH2)(dppe)Cp*]PF6 with (BuLi)-Bu-n and phenyl cyanate. The complex behaves as a typical transition metal acetylide upon reaction with tetracyanoethene, affording a metallated pentacyanobutadiene. Complex I is a useful metalloligand, and its reactions with [W(thf)(CO)5], [RuCl(PPh3)(2)Cp], [RuCl(dppe)Cp*] or cis-[RuCl2(dppe)(2)] all afforded products featuring the M-C&3bond; CC&3bond; N-M' motif, for which ground state structures indicate a degree of polarisation. Electrochemical and spectroelectrochemical studies reveal moderate interactions between the metal centres in the 35-electron dications [{Cp*(dppe)Ru}(mu-C&3bond; CC&3bond; N){RuL2Cp'}](2+) Ru(PPh3)(2)CP, Ru(dppe)Cp*).