977 resultados para Neuronal plasticity


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Learning and memory depend on neuronal alterations induced by electrical activity. Most examples of activity-dependent plasticity, as well as adaptive responses to neuronal injury, have been linked explicitly or implicitly to induction by Ca(2+) signals produced by depolarization. Indeed, transient Ca(2+) signals are commonly assumed to be the only effective transducers of depolarization into adaptive neuronal responses. Nevertheless, Ca(2+)-independent depolarization-induced signals might also trigger plastic changes. Establishing the existence of such signals is a challenge because procedures that eliminate Ca(2+) transients also impair neuronal viability and tolerance to cellular stress. We have taken advantage of nociceptive sensory neurons in the marine snail Aplysia, which exhibit unusual tolerance to extreme reduction of extracellular and intracellular free Ca(2+) levels. The axons of these neurons exhibit a depolarization-induced memory-like hyperexcitability that lasts a day or longer and depends on local protein synthesis for induction. Here we show that transient localized depolarization of these axons in an excised nerve-ganglion preparation or in dissociated cell culture can induce short- and intermediate-term axonal hyperexcitability as well as long-term protein synthesis-dependent hyperexcitability under conditions in which Ca(2+) entry is prevented (by bathing in nominally Ca(2+) -free solutions containing EGTA) and detectable Ca(2+) transients are eliminated (by adding BAPTA-AM). Disruption of Ca(2+) release from intracellular stores by pretreatment with thapsigargin also failed to affect induction of axonal hyperexcitability. These findings suggest that unrecognized Ca(2+)-independent signals exist that can transduce intense depolarization into adaptive cellular responses during neuronal injury, prolonged high-frequency activity, or other sustained depolarizing events.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Early diagnosis of Parkinson's disease (PD) is required to improve therapeutic responses. Indeed, a clinical diagnosis of resting tremor, rigidity, movement and postural deficiencies usually reflect >50% loss of the nigrostriatal system in disease. In a step to address this, quantitative diffusion tensor magnetic resonance imaging (DTI) was used to assess nigrostriatal degeneration in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) intoxication model of dopaminergic nigral degeneration. We now demonstrate increased average diffusion (p<0.005) and decreased fractional anisotropy (p<0.03) in the substantia nigra (SN) of 5- to 7-day MPTP-treated animals when compared to saline controls. Transverse diffusivity demonstrated the most significant differences (p < or = 0.002) and correlated with the numbers of SN dopaminergic neurons (r=-0.75, p=0.012). No differences were found in the striatum, corpus callosum, cerebral cortex, or ventricles. These results demonstrate that DTI may be used as a surrogate biomarker of nigral dopaminergic neuronal degeneration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The tail-withdrawal circuit of Aplysia provides a useful model system for investigating synaptic dynamics. Sensory neurons within the circuit manifest several forms of synaptic plasticity. Here, we developed a model of the circuit and investigated the ways in which depression (DEP) and potentiation (POT) contributed to information processing. DEP limited the amount of motor neuron activity that could be elicited by the monosynaptic pathway alone. POT within the monosynaptic pathway did not compensate for DEP. There was, however, a synergistic interaction between POT and the polysynaptic pathway. This synergism extended the dynamic range of the network, and the interplay between DEP and POT made the circuit responded preferentially to long-duration, low-frequency inputs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neurons and their precursor cells are formed in different regions within the developing CNS, but they migrate and occupy very specific sites in the mature CNS. The ultimate position of neurons is crucial for establishing proper synaptic connectivity in the brain. In Drosophila, despite its extensive use as a model system to study neurogenesis, we know almost nothing about neuronal migration or its regulation. In this paper, I show that one of the most studied neuronal pairs in the Drosophila nerve cord, RP2/sib, has a complicated migratory route. Based on my studies on Wingless (Wg) signaling, I report that the neuronal migratory pattern is determined at the precursor cell stage level. The results show that Wg activity in the precursor neuroectodermal and neuroblast levels specify neuronal migratory pattern two divisions later, thus, well ahead of the actual migratory event. Moreover, at least two downstream genes, Cut and Zfh1, are involved in this process but their role is at the downstream neuronal level. The functional importance of normal neuronal migration and the requirement of Wg signaling for the process are indicated by the finding that mislocated RP2 neurons in embryos mutant for Wg-signaling fail to properly send out their axon projection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two distinct classes of neurons have been examined in the nervous system of Aplysia. The membrane properties of these neurons are regulated by intracellular signalling molecules in both a short-term and a long-term fashion.^ The role of the phosphatidylinositol cycle in the control of neuronal properties was studied in a class of bursting pacemaker cells, the left upper-quadrant bursting neurons (cells L2, L3, L4, and L6) of the abdominal ganglion of Aplysia. These cells display a regular burst-firing pattern that is controlled by cyclic changes of intracellular Ca$\sp{2+}$ that occur during the bursting rhythm. The characteristic bursting pattern of these neurons occurs within a range of membrane potentials ($-35$ to $-50$ mV) called the pacemaker range. Intracellular pressure injection of inositol 1,4,5-trisphosphate (IP$\sb3$) altered the bursting rhythm of the bursting cells. Injection of IP$\sb3$ induced a brief depolarization that was followed by a long-lasting (2-15 min) hyperpolarization. When cells were voltage-clamped at potentials within the pacemaker range, injection of IP$\sb3$ generally induced a biphasic response that had a total duration of 2-15 min. An initial inward shift in holding current (I$\sb{\rm in}$), which lasted 5-120 sec, was followed by a slow outward shift in holding current (I$\sb{\rm out}$). At membrane potentials more negative than $-40$ mV, I$\sb{\rm in}$ was associated with a small and relatively voltage-independent increase in membrane conductance. I$\sb{\rm in}$ was not blocked by bath application of TTX or Co$\sp{2+}$. Although I$\sb{\rm in}$ was activated by injection of IP$\sb3$, it was not blocked by iontophoretic injection of ethyleneglycol-bis-(beta-aminoethyl ether), N, N$\sp\prime$-tetraacetic acid (EGTA) sufficient to block the Ca$\sp{2+}$-activated inward tail current (I$\sb{\rm B}$).^ Long-term (lasting at least 24 hours) effects of adenylate cyclase activation were examined in a well characterized class of mechanosensory neurons in Aplysia. The injected cells were analyzed 24 hours later by two-electrode voltage-clamp techniques. We found that K$\sp+$ currents of these cells were reduced 24 hours after injection of cAMP. The currents that were reduced by cAMP were very similar to those found to be reduced 24 hours after behavioral sensitization. These results suggest that cAMP is part of the intracellular signal that induces long-term sensitization in Aplysia. (Abstract shortened with permission of author.) ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A change in synaptic strength arising from the activation of two neuronal pathways at approximately the same time is a form of associative plasticity and may underlie classical conditioning. Previously, a cellular analog of a classical conditioning protocol has been demonstrated to produce short-term associative plasticity at the connections between sensory and motor neurons in Aplysia. A similar training protocol produced long-term (24 hour) enhancement of excitatory postsynaptic potentials (EPSPs). EPSPs produced by sensory neurons in which activity was paired with a reinforcing stimulus were significantly larger than unpaired controls 24 hours after training. To examined whether the associative plasticity observed at these synapses may be involved in higher-order forms of classical conditioning, a neural analog of contingency was developed. In addition, computer simulations were used to analyze whether the associative plasticity observed in Aplysia could, in theory, account for second-order conditioning and blocking. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the central goals of neuroscience research is to determine how networks of neurons control and modify behavior. One of the most influential model systems for this kind of analysis is the siphon and gill withdrawal reflex of the marine mollusc A. californica. In response to tactile stimulation, the siphon displays 3 different responses: (1) a posterior pointing and leveling (flaring) of the siphon in response to tail stimulation (the siphon T response), (2) constriction and anterior pointing to head stimulation (the siphon H response) and (3) constriction and withdrawal between the animal's parapodia (the siphon S response). The siphon S response is pseudoconditioned by a noxious tail stimulus to resemble the siphon T response. Behavioral and combined behavioral/intracellular studies were conducted to determine the motor neuronal control of these behaviors and to search for mechanisms of siphon response transformation following pseudoconditioning. The present studies have found that the flaring component of pseudoconditioned siphon S responses occurs during mantle pumping (MP) triggered by noxious tail stimulation. Siphon stimulation also triggers MP, as recorded in neurons of the Interneuron II pattern generator which commands MP. The 4 LF$\rm\sb{SB}$ siphon motor neurons (SMNs) were found necessary and sufficient for the siphon T response, while SMNs RD$\rm\sb S$ and LD$\rm\sb{S1}$ were found necessary and sufficient for the siphon H response. Following pseudoconditioning, there is an increase in the number of evoked spikes to the test stimulus for the LF$\rm\sb{SB}$ cells and a decreased number for RD$\rm\sb S.$ Siphon flaring occurring during the pseudoconditioned response correlates with increased LF$\rm\sb{SB}$ activity during triggered MP cycles. This suggests that psuedoconditioning is in part due to reconfiguration of the motor outputs of the Interneuron II network. These results suggest that these defensive responses are controlled and patterned by a well-defined, finite set of motor neurons and interneurons (Interneuron II) that are dedicated to specific behavioral functions, but also have parallel distributed properties. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An important goal in the study of long-term memory is to understand the signals that induce and maintain the underlying neural alterations. In Aplysia, long-term sensitization of defensive reflexes has been examined in depth as a simple model of memory. Extensive studies of sensory neurons (SNs) in Aplysia have led to a cellular and molecular model of long-term memory that has greatly influenced memory research. According to this model, induction of long-term memory in Aplysia depends upon serotonin (5-HT) release and subsequent activation of the cAMP-PKA pathway in SNs. The evidence supporting this model mainly came from studies of long-term synaptic facilitation (LTF) using dissociated (and therefore axotomized) cells growing in culture. However, studies in more intact preparations have produced complex and discrepant results. Because these SNs function as nociceptors, and display similar alterations (long-term hyperexcitability [LTH], LTF, and growth) in models of memory and nerve injury, this study examined the roles of 5-HT and the cAMP-PKA pathway in the induction and expression of long-term, injury-related LTH and LTF in Aplysia SNs. ^ The results presented here suggest that 5-HT is not a primary signal for inducing LTH (and perhaps LTF) in Aplysia SNs. Prolonged treatment with 5-HT failed to induce LTH of Aplysia SNs in either ganglia or dissociated-cell preparations. Treatment with a 5-HT antagonist, methiothepin, during noxious nerve stimulation failed to reduce 24 hr LTH. Furthermore, while 5-HT can induce LTF of SN synapses, this LTF appears to be an indirect effect of 5-HT on other cells. When neural activity was suppressed by elevating divalent cations or by using tetrodotoxin (TTX), 5-HT failed to induce LTF. Unlike LTF, LTH of the SNs could not be produced, even when 5-HT treatment occurred in normal artificial sea water (ASW), suggesting that LTH and LTF are likely to depend on different signals for induction. However, methiothepin reduced the later expression of LTH induced by nerve stimulation, suggesting that 5-HT contributes to the maintenance of LTH in Aplysia SNs.n of somata from the ganglion (which axotomizes SNs) or crushing peripheral n. ^ In summary, this study found that 5-HT and the cAMP-PKA pathway are not involved in the induction of long-term, injury-related LTH of Aplysia SNs, but persistent release of 5-HT and persistent PKA activity contribute to the maintenance of LTH induced by injury. (Abstract shortened by UMI.)^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here, we investigate the involvement of two sites of plasticity in the learning and expression of a simple associative motor behavior—the classically conditioned eyelid response. While previous studies clearly demonstrate that lesions of the anterior interpositus nucleus of the cerebellum abolish learned responses and prevent subsequent learning, studies investigating the effects of lesions of the cerebellar cortex on learning and retention have produced discrepant results. We complement ablative lesion studies of the cortex with the use of reversible, pharmacological blockade of cerebellar cortical transmission to investigate the role of the cerebellar cortex in eyelid conditioning. We demonstrate that both pharmacological blockade as well as focused ablative lesions of the cortex abolish timed responses and unmask responses with a fixed, short latency that are not displayed by the intact animal. Pharmacological blockade of cerebellar cortex output at various stages of acquisition and extinction reveals appropriate, learning dependent changes in the amplitude and probability of short latency responses during training. Acquisition of both short latency as well as timed responses is prevented by ablative lesions of the anterior lobe of the cerebellar cortex. These convergent results from technically distinct methods of removing the influence of the cerebellar cortex from conditioned behavior are consistent with the proposal that (1) eyelid conditioning engages two cerebellar sites of plasticity-one in the cortex and one in the anterior interpositus nucleus, (2) plasticity in the cerebellar cortex is necessary for proper response timing, (3) plasticity in the nucleus mediates the short latency responses unmasked by lesions of the cerebellar cortex, and (4) cerebellar cortical output is necessary for the induction of plasticity in the nucleus. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neuropathic pain caused by peripheral nerve injury is a debilitating neurological condition of high clinical relevance. On the cellular level, the elevated pain sensitivity is induced by plasticity of neuronal function along the pain pathway. Changes in cortical areas involved in pain processing contribute to the development of neuropathic pain. Yet, it remains elusive which plasticity mechanisms occur in cortical circuits. We investigated the properties of neural networks in the anterior cingulate cortex (ACC), a brain region mediating affective responses to noxious stimuli. We performed multiple whole-cell recordings from neurons in layer 5 (L5) of the ACC of adult mice after chronic constriction injury of the sciatic nerve of the left hindpaw and observed a striking loss of connections between excitatory and inhibitory neurons in both directions. In contrast, no significant changes in synaptic efficacy in the remaining connected pairs were found. These changes were reflected on the network level by a decrease in the mEPSC and mIPSC frequency. Additionally, nerve injury resulted in a potentiation of the intrinsic excitability of pyramidal neurons, whereas the cellular properties of interneurons were unchanged. Our set of experimental parameters allowed constructing a neuronal network model of L5 in the ACC, revealing that the modification of inhibitory connectivity had the most profound effect on increased network activity. Thus, our combined experimental and modeling approach suggests that cortical disinhibition is a fundamental pathological modification associated with peripheral nerve damage. These changes at the cortical network level might therefore contribute to the neuropathic pain condition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synaptic plasticity rules change during development: while hippocampal synapses can be potentiated by a single action potential pairing protocol in young neurons, mature neurons require burst firing to induce synaptic potentiation. An essential component for spike timing-dependent plasticity is the backpropagating action potential (BAP). BAP along the dendrites can be modulated by morphology and ion channel composition, both of which change during late postnatal development. However it is unclear whether these dendritic changes can explain the developmental changes in synaptic plasticity induction rules. Here, we show that tonic GABAergic inhibition regulates dendritic action potential backpropagation in adolescent but not pre-adolescent CA1 pyramidal neurons. These developmental changes in tonic inhibition also altered the induction threshold for spike timing-dependent plasticity in adolescent neurons. This GABAergic regulatory effect upon backpropagation is restricted to distal regions of apical dendrites (>200 μm) and mediated by α5-containing GABA(A) receptors. Direct dendritic recordings demonstrate α5-mediated tonic GABA(A) currents in adolescent neurons which can modulate backpropagating action potentials. These developmental modulations in dendritic excitability could not be explained by concurrent changes in dendritic morphology. To explain our data, model simulations propose a distally-increasing or localized distal expression of dendritic α5 tonic inhibition in mature neurons. Overall, our results demonstrate that dendritic integration and plasticity in more mature dendrites are significantly altered by tonic α5 inhibition in a dendritic region-specific and developmentally-regulated manner.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reactive oxygen intermediates (ROI) contribute to neuronal injury in cerebral ischemia and trauma. In this study we explored the role of ROI in bacterial meningitis. Meningitis caused by group B streptococci in infant rats led to two distinct forms of neuronal injury, areas of necrosis in the cortex and neuronal loss in the dentate gyrus of the hippocampus, the latter showing evidence for apoptosis. Staining of brain sections with diaminobenzidine after perfusion with manganese buffer and measurement of lipid peroxidation products in brain homogenates both provided evidence that meningitis led to the generation of ROI. Treatment with the radical scavenger alpha-phenyl-tert-butyl nitrone (PBN) (100 mg/kg q8h i.p.) beginning at the time of infection completely abolished ROI detection and the increase in lipidperoxidation. Cerebral cortical perfusion was reduced in animals with meningitis to 37.5+/-21.0% of uninfected controls (P < 0.05), and PBN restored cortical perfusion to 72.0+/-8.1% of controls (P < 0.05 vs meningitis). PBN also completely prevented neuronal injury in the cortex and hippocampus, when started at the time of infection (P < 0.02), and significantly reduced both forms of injury, when started 18 h after infection together with antibiotics (P < 0.004 for cortex and P < 0.001 for hippocampus). These data indicate that the generation of ROI is a major contributor to cerebral ischemia and necrotic and apoptotic neuronal injury in this model of neonatal meningitis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thigmomorphogenesis, the characteristic phenotypic changes by which plants react to mechanical stress, is a widespread and probably adaptive type of phenotypic plasticity. However, little is known about its genetic basis and population variation. Here, we examine genetic variation for thigmomorphogenesis within and among natural populations of the model system Arabidopsis thaliana. Offspring from 17 field-collected European populations was subjected to three levels of mechanical stress exerted by wind. Overall, plants were remarkably tolerant to mechanical stress. Even high wind speed did not significantly alter the correlation structure among phenotypic traits. However, wind significantly affected plant growth and phenology, and there was genetic variation for some aspects of plasticity to wind among A. thaliana populations. Our most interesting finding was that phenotypic traits were organized into three distinct and to a large degree statistically independent covariance modules associated with plant size, phenology, and growth form, respectively. These phenotypic modules differed in their responsiveness to wind, in the degree of genetic variability for plasticity, and in the extent to which plasticity affected fitness. It is likely, therefore, that thigmomorphogenesis in this species evolves quasi-independently in different phenotypic modules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Notch signaling is an evolutionarily conserved pathway, which is fundamental for neuronal development and specification. In the last decade, increasing evidence has pointed out an important role of this pathway beyond embryonic development, indicating that Notch also displays a critical function in the mature brain of vertebrates and invertebrates. This pathway appears to be involved in neural progenitor regulation, neuronal connectivity, synaptic plasticity and learning/memory. In addition, Notch appears to be aberrantly regulated in neurodegenerative diseases, including Alzheimer's disease and ischemic injury. The molecular mechanisms by which Notch displays these functions in the mature brain are not fully understood, but are currently the subject of intense research. In this review, we will discuss old and novel Notch targets and molecular mediators that contribute to Notch function in the mature brain and will summarize recent findings that explore the two facets of Notch signaling in brain physiology and pathology.