988 resultados para Natural soil fertility


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soil erosion is a natural geological phenomenon resulting from removal and transportation of soil particles by water, wind, ice and gravity. As soil erosion may be affected from cultural factors as well. The physical and social phenomena of soil erosion are researched in six communities in the upper part of Rio Grijalva Basin in the vicinity of Motozintla de Mendoza, Chiapas, Mexico. For this study, the USDA RUSLE model was applied to estimate soil erosion rates in the six communities based on the available data. The RUSLE model is based on soil properties, topography, and land cover and management factors. These results showed that estimated soil erosion rates ranged from a high of 2,050 metric ton ha-1 yr-1 to a low of 100 metric ton ha-1 yr-1. A survey concerning knowledge, attitudes and practices (KAP) related to soil erosion was also conducted in all 236 households in the six communities. The main findings of the KAP survey were: 69% of respondents did not know what soil erosion was, while over 40% of the population perceived that hurricanes are the biggest factors that cause soil erosion, and about 20 % of the interviewees said that the landslides are the consequences of the soil erosion. People in communities did not perceive cultural factors as important in conservation efforts for reduce vulnerability to erosion; therefore, the results obtained are suggested to be useful for informing efforts to educate stakeholders.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soil conservation technologies that fit well to local scale and are acceptable to land users are increasingly needed. To achieve this at small-holder farm level, there is a need for an understanding of specific erosion processes and indicators, the land users’ knowledge and their willingness, ability and possibilities to respond to the respective problems to decide on control options. This study was carried out to assess local erosion and performance of earlier introduced conservation terraces from both technological and land users’ points of view. The study was conducted during July to August 2008 at Angereb watershed on 58 farm plots from three selected case-study catchments. Participatory erosion assessment and evaluation were implemented along with direct field measurement procedures. Our focus was to involve the land users in the action research to explore with them the effectiveness of existing conservation measures against the erosion hazard. Terrace characteristics measured and evaluated against the terrace implementation guideline of Hurni (1986). The long-term consequences of seasonal erosion indicators had often not been known and noticed by farmers. The cause and effect relationships of the erosion indicators and conservation measures have shown the limitations and gaps to be addressed towards sustainable erosion control strategies. Less effective erosion control has been observed and participants have believed the gaps are to be the result of lack of landusers’ genuine participation. The results of both local erosion observation and assessment of conservation efficacy using different aspects show the need to promote approaches for erosion evaluation and planning of interventions by the farmers themselves. This paper describes the importance of human factor involving in the empirical erosion assessment methods towards sustainable soil conservation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The natural abundance of stable Se isotopes in methylselenides reflects sources and formation conditions of methylselenides. We tested the effects of (i) different inorganic Se species spiked to soils and (ii) different soil samples on the extent of fungal biomethylation of Se and the Se isotope ratios (δ82/76Se) in methylselenides. Furthermore, we assessed the decrease of dissolved, bioavailable Se during three days of equilibration of the soils with Se-enriched solutions. We conducted closed microcosm experiments containing soil spiked with Se(IV) or Se(VI), a growth medium, and the fungus species Alternaria alternata for 11 d. The concentrations and isotope ratios of Se were determined in all components of the microcosm with multicollector ICP-MS. The equilibration of the spiked Se(IV) and Se(VI) for 3 d resulted in a decrease of dissolved, bioavailable Se concentrations by 32 to 44% and 8 to 14%, respectively. Very little isotope fractionation occurred during this phase, and it can be attributed to mixing of the added Se with the pre-existing Se in the soils and minor Se(IV) reduction in one experiment. In two of the incubated soils – moderately acidic roadside and garden soils – between 9.1 and 30% of the supplied Se(IV) and 1.7% of the supplied Se(VI) were methylated while in a strongly acidic forest soil no Se methylation occurred. The methylselenides derived from Se(IV) were strongly depleted in 82Se (δ82/76Se = − 3.3 to − 4.5‰) compared with the soil (0.16–0.45‰) and the added Se(IV) (0.20‰). The methylselenide yield of the incubations with Se(VI) was too small for isotope measurements. Our results demonstrate that Se source species and soil properties influence the extent of Se biomethylation and that the produced methylselenides contain isotopically light Se.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High-resolution seismic profiles and sediment cores from Lake Ledro combined with soil and riverbed samples from the lake's catchment area are used to assess the recurrence of natural hazards (earthquakes and flood events) in the southern Italian Alps during the Holocene. Two well-developed deltas and a flat central basin are identified on seismic profiles in Lake Ledro. Lake sediments have been finely laminated in the basin since 9000 cal. yr BP and frequently interrupted by two types of sedimentary events (SEs): light-coloured massive layers and dark-coloured graded beds. Optical analysis (quantitative organic petrography) of the organic matter present in soil, riverbed and lacustrine samples together with lake sediment bulk density and grain-size analysis illustrate that light-coloured layers consist of a mixture of lacustrine sediments and mainly contain algal particles similar to the ones observed in background sediments. Light-coloured layers thicker than 1.5 cm in the main basin of Lake Ledro are synchronous to numerous coeval mass-wasting deposits remoulding the slopes of the basin. They are interpreted as subaquatic mass-movements triggered by historical and pre-historical regional earthquakes dated to AD2005, AD1891, AD1045 and 1260, 2545, 2595, 3350, 3815, 4740, 7190, 9185 and 11 495 cal. yr BP. Darkcoloured SEs develop high-amplitude reflections in front of the deltas and in the deep central basin. These beds are mainly made of terrestrial organic matter (soils and lignocellulosic debris) and are interpreted as resulting from intense hyperpycnal flood event. Mapping and quantifying the amount of soil material accumulated in the Holocene hyperpycnal flood deposits of the sequence allow estimating that the equivalent soil thickness eroded over the catchment area reached up to 5mm during the largest Holocene flood events. Such significant soil erosion is interpreted as resulting from the combination of heavy rainfall and snowmelt. The recurrence of flash flood events during the Holocene was, however, not high enough to affect pedogenesis processes and highlight several wet regional periods during the Holocene. The Holocene period is divided into four phases of environmental evolution. Over the first half of the Holocene, a progressive stabilization of the soils present through the catchment of Lake Ledro was associated with a progressive reforestation of the area and only interrupted during the wet 8.2 event when the soil destabilization was particularly important. Lower soil erosion was recorded during the mid-Holocene climatic optimum (8000-4200 cal. yr BP) and associated with higher algal production. Between 4200 and 3100 cal. yr BP, both wetter climate and human activities within the drainage basin drastically increased soil erosion rates. Finally, from 3100 cal. yr BP to the present-day, data suggest increasing and changing human land use.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Complementarity that leads to more efficient resource use is presumed to be a key mechanism explaining positive biodiversity–productivity relationships but has been described solely for experimental set-ups with controlled environmental settings or for very short gradients of abiotic conditions, land-use intensity and biodiversity. Therefore, we analysed plant diversity effects on nitrogen dynamics across a broad range of Central European grasslands. The 15N natural abundance in soil and plant biomass reflects the net effect of processes affecting ecosystem N dynamics. This includes the mechanism of complementary resource utilization that causes a decrease in the 15N isotopic signal. We measured plant species richness, natural abundance of 15N in soil and plants, above-ground biomass of the community and three single species (an herb, grass and legume) and a variety of additional environmental variables in 150 grassland plots in three regions of Germany. To explore the drivers of the nitrogen dynamics, we performed several analyses of covariance treating the 15N isotopic signals as a function of plant diversity and a large set of covariates. Increasing plant diversity was consistently linked to decreased δ15N isotopic signals in soil, above-ground community biomass and the three single species. Even after accounting for multiple covariates, plant diversity remained the strongest predictor of δ15N isotopic signals suggesting that higher plant diversity leads to a more closed nitrogen cycle due to more efficient nitrogen use. Factors linked to increased δ15N values included the amount of nitrogen taken up, soil moisture and land-use intensity (particularly fertilization), all indicators of the openness of the nitrogen cycle due to enhanced N-turnover and subsequent losses. Study region was significantly related to the δ15N isotopic signals indicating that regional peculiarities such as former intensive land use could strongly affect nitrogen dynamics. Synthesis. Our results provide strong evidence that the mechanism of complementary resource utilization operates in real-world grasslands where multiple external factors affect nitrogen dynamics. Although single species may differ in effect size, actively increasing total plant diversity in grasslands could be an option to more effectively use nitrogen resources and to reduce the negative environmental impacts of nitrogen losses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aims and Methods Disturbance is supposed to play an important role for biodiversity and ecosystem stability as described by the intermediate disturbance hypothesis (IDH), which predicts highest species richness at intermediate levels of disturbances. In this study, we tested the effects of artificial soil disturbances on diversity of annual and perennial vascular plants and bryophytes in a field experiment in 86 agricultural grasslands differing in land use in two regions of Germany. On each grassland, we implemented four treatments: three treatments differing in application time of soil disturbances and one control. One year after experimental disturbance, we recorded vegetation and measured biomass productivity and bare ground. We analysed the disturbance response taking effects of region and land-use-accompanied disturbance regimes into account.Important Findings Region and land-use type strongly determined plant species richness. Experimental disturbances had small positive effects on the species richness of annuals, but none on perennials or bryophytes. Bare ground was positively related to species richness of bryophytes. However, exceeding the creation of 12% bare ground further disturbance had a detrimental effect on bryophyte species richness, which corresponds to the IDH. As biomass productivity was unaffected by disturbance our results indicate that the disturbance effect on species richness of annuals was not due to decreased overall productivity, but rather due to short-term lowered inter- and intraspecific competition at the newly created microsites.Generally, our results highlight the importance of soil disturbances for species richness of annual plants and bryophytes in agricultural grasslands. However, most grasslands were disturbed naturally or by land-use practices and our additional experimental soil disturbances only had a small short-term effect. Overall, total plant diversity in grasslands seemed to be more limited by the availability of propagules rather than by suitable microsites for germination. Thus, nature conservation efforts to increase grassland diversity should focus on overcoming propagule limitation, for instance by additional sowing of seeds, while the creation of additional open patches by disturbance might only be appropriate where natural disturbances are scarce.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Over the past few decades, the advantages of the visible-near infra-red (VisNIR) diffuse reflectance spectrometer (DRS) method have enabled prediction of soil organic carbon (SOC). In this study, SOC was predicted using regression models for samples taken from three sites (Gununo, Maybar and Anjeni) in Ethiopia. SOC was characterized in laboratory using conventional wet chemistry and VisNIR-DRS methods. Principal component analysis (PCA), principal component regression (PCR) and partial least square regression (PLS) models were developed using Unscrambler X 10.2. PCA results show that the first two components accounted for a minimum of 96% variation which increased for individual sites and with data treatments. Correlation (r), coefficient of determination (R2) and residual prediction deviation (RPD) were used to rate four models built. PLS model (r, R2, RPD) values for Anjeni were 0.9, 0.9 and 3.6; for Gununo values 0.6, 0.3 and 1.2; for Maybar values 0.6, 0.3 and 0.9, and for the three sites values 0.7, 0.6 and 1.5, respectively. PCR model values (r, R2, RPD) for Anjeni were 0.9, 0.8 and 2.7; for Gununo values 0.5, 0.3 and 1; for Maybar values 0.5, 0.1 and 0.7, and for the three sites values 0.7, 0.5 and 1.2, respectively. Comparison and testing of models shows superior performance of PLS to PCR. Models were rated as very poor (Maybar), poor (Gununo and three sites) and excellent (Anjeni). A robust model, Anjeni, is recommended for prediction of SOC in Ethiopia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Investigating preferential flow, including macropore flow, is crucial to predicting and preventing point sources of contamination in soil, for example in the vicinity of pumping wells. With a view to advancing groundwater protection, this study aimed (i) to quantify the strength of macropore flow in four representative natural grassland soils on the Swiss plateau, and (ii) to define the parameters that significantly control macropore flow in grassland soil. For each soil type we selected three measurement points on which three successive irrigation experiments were carried out, resulting in a total of 36 irrigations. The strength of macropore flow, parameterized as the cumulated water volume flowing from macropores at a depth of 1 m in response to an irrigation of 60 mm h−1 intensity and 1 h duration, was simulated using the dual-permeability MACRO model. The model calibration was based on the key soil parameters and fine measurements of water content at different depths. Modelling results indicate high performance of macropore flow in all investigated soil types except in gleysols. The volume of water that flowed from macropores and was hence expected to reach groundwater varied between 81% and 94% in brown soils, 59% and 67% in para-brown soils, 43% and 56% in acid brown soils, and 22% and 35% in gleysols. These results show that spreading pesticides and herbicides in pumping well protection zones poses a high risk of contamination and must be strictly prohibited. We also found that organic carbon content was not correlated with the strength of macropore flow, probably due to its very weak variation in our study, while saturated water content showed a negative correlation with macropore flow. The correlation between saturated hydraulic conductivity (Ks) and macropore flow was negative as well, but weak. Macropore flow appears to be controlled by the interaction between the bulk density of the uppermost topsoil layer (0–0.10 m) and the macroporosity of the soil below. This interaction also affects the variations in Ks and saturated water content. Further investigations are needed to better understand the combined effect of all these processes including the exchange between micropore and macropore domains.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Volatile organic compounds (VOCs) released by soil microorganisms influence plant growth and pathogen resistance. Yet, very little is known about their influence on herbivores and higher trophic levels. We studied the origin and role of a major bacterial VOC, 2,3-butanediol (2,3-BD), on plant growth, pathogen and herbivore resistance, and the attraction of natural enemies in maize. One of the major contributors to 2,3-BD in the headspace of soil-grown maize seedlings was identified as Enterobacter aerogenes, an endophytic bacterium that colonizes the plants. The production of 2,3-BD by E. aerogenes rendered maize plants more resistant against the Northern corn leaf blight fungus Setosphaeria turcica. On the contrary, E. aerogenes-inoculated plants were less resistant against the caterpillar Spodoptera littoralis. The effect of 2,3-BD on the attraction of the parasitoid Cotesia marginiventris was more variable: 2,3-BD application to the headspace of the plants had no effect on the parasitoids, but application to the soil increased parasitoid attraction. Furthermore, inoculation of seeds with E. aerogenes decreased plant attractiveness, whereas inoculation of soil with a total extract of soil microbes increased parasitoid attraction, suggesting that the effect of 2,3-BD on the parasitoid is indirect and depends on the composition of the microbial community.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Root herbivores are important ecosystem drivers and agricultural pests, and, possibly as a consequence, plants protect their roots using a variety of defensive strategies. One aspect that distinguishes belowground from aboveground plant–insect interactions is that roots are constantly exposed to a set of soil-specific abiotic factors. These factors can profoundly influence root resistance, and, consequently, the outcome of the interaction with belowground feeders. In this review, we synthesize the current literature on the impact of soil moisture, nutrients, and texture on root–herbivore interactions. We show that soil abiotic factors influence the interaction by modulating herbivore abundance and behaviour, root growth and resistance, beneficial microorganisms, as well as natural enemies of the herbivores. We suggest that abiotic heterogeneity may explain the high variability that is often encountered in root–herbivore systems. We also propose that under abiotic stress, the relative fitness value of the roots and the potential negative impact of herbivory increases, which may lead to a higher defensive investment and an increased recruitment of beneficial microorganisms by the plant. At the same time, both root-feeding herbivores and natural enemies are likely to decrease in abundance under extreme environmental conditions, leading to a context- and species-specific impact on plant fitness. Only by using tightly controlled experiments that include soil abiotic heterogeneity will it be possible to understand the impact of root feeders on an ecosystem scale and to develop predictive models for pest occurrence and impact.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The sustainable management of natural resources is a key issue for sustainable development of a poor, mountainous country such as Tajikistan. In order to strengthen its agricultural and infrastructural development efforts and alleviate poverty in rural areas, spatial information and analysis are of crucial importance to improve priority setting and decision making efficiency. However, poor access to geospatial data and tools, and limited capacity in their use has greatly constrained the ability of governmental institutions to effectively assess, plan, and monitor natural resources management. The Centre for Development and Environment (CDE) has thus been mandated by the World Bank Group to provide adequate technical support to the Community Agriculture and Watershed Management Project (CAWMP). This support consists of a spatial database on soil degradation trends in 4 watersheds, capacity development in and awareness creation about geographic information technology and a spatial data exchange hub for natural resources management in Tajikistan. CDE’s support has started in July 2007 and will last until December 2007 with a possible extension in 2008.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For successful implementation of any soil and water conservation (SWC) or sustainable land management practice, it is essential to have a proper understanding of the natural and human environment in which these practices are applied. This understanding should be based on comprehensive information concerning the application of the technologies and not solely on the technological details. The World Overview of Conservation Approaches and Technologies (WOCAT) is documenting and evaluating SWC practices worldwide, following a standardised methodology that facilitates exchange and comparison of experiences. Notwithstanding this standardisation, WOCAT allows flexible use of its outputs, adapted to different users and different environments. WOCAT offers a valuable tool for evaluating the strengths and weaknesses of SWC practices and their potential for application in other areas. Besides collecting a wealth of information, gaps in available information are also exposed, showing the need for more research in those fields. Several key issues for development- oriented research have been identified and are being addressed in collaboration with a research programme for mitigating syndromes of global change.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite various research activities in the last decades across the world, many challenges remain to integrate the concept of ecosystem services (ESS) in decision-making, and a coherent approach to assess and value ESS is still lacking. There are a lot of different – often context-specific – ESS frameworks with their own definitions and understanding of terms. Based on a thorough review, the EU FP7 project RECARE (www.recare-project.eu) suggests an adapted framework for ecosystem services related to soils that can be used for practical application in preventing and remediating degradation of soils in Europe. This lays the foundation for the development and selection of appropriate methods to measure, evaluate, communicate and negotiate the services we obtain from soils with stakeholders in order to improve land management. Similar to many ESS frameworks, the RECARE framework distinguishes between an ecosystem and human well-being part. As the RECARE project is focused on soil threats, this is the starting point on the ecosystem part of the framework. Soil threats affect natural capital, such as soil, water, vegetation, air and animals, and are in turn influenced by those. Within the natural capital, the RECARE framework focuses especially on soil and its properties, classified in inherent and manageable properties. The natural capital then enables and underpins soil processes, while at the same time being affected by those. Soil processes, finally, are the ecosystem’s capacity to provide services, thus they support the provision of soil functions and ESS. ESS may be utilized to produce benefits for individuals and human society. Those benefits are explicitly or implicitly valued by individuals and human society. The values placed on those benefits influence policy and decision-making and thus lead to a societal response. Individual (e.g. farmers’) and societal decision making and policy determine land management and other (human) driving forces, which in turn affect soil threats and natural capital. In order to improve ESS with Sustainable Land Management (SLM) – i.e. measures aimed to prevent or remediate soil threats, the services identified in the framework need to be “manageable” (modifiable) for the stakeholders. To this end, effects of soil threats and prevention / remediation measures are captured by key soil properties as well as through bio-physical (e.g. reduced soil loss), socio-economic (e.g. reduced workload) and socio-cultural (e.g. aesthetics) impact indicators. In order to use such indicators in RECARE, it should be possible to associate the changes in soil processes to impacts of prevention / remediation measures (SLM). This requires the indicators to be sensitive enough to small changes, but still sufficiently robust to provide evidence of the change and attribute it to SLM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sample preparation procedures for AMS measurements of 129I and 127I in environmental materials and some methodological aspects of quality assurance are discussed. Measurements from analyses of some pre-nuclear soil and thyroid gland samples and of a systematic investigation of natural waters in Lower Saxony, Germany, are described. Although the up-to-now lowest 129I/127I ratios in soils and thyroid glands were observed, they are still suspect to contamination since they are significantly higher than the pre-nuclear equilibrium ratio in the marine hydrosphere. A survey on all available 129I/127I isotopic ratios in precipitation shows a dramatic increase until the middle of the 1980s and a stabilization since 1987 at high isotopic ratios of about (3.6–8.3)×10−7. In surface waters, ratios of (57–380)×10−10 are measured while shallow ground waters show with ratios of (1.3–200)×10−10 significantly lower values with a much larger spread. The data for 129I in soils and in precipitation are used to estimate pre-nuclear and modern 129I deposition densities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Questions Do extreme dry spells in late summer or in spring affect abundance and species composition of the reproductive shoots and the seed rain in the next annual crop? Are drought effects on reproductive shoots related to the rooting depths of species? Location Species-rich semi-natural grassland at Negrentino, Switzerland. Methods In plots under automated rain-out shelters, rainwater was added to simulate normal conditions and compare them with two experimentally effected long dry spells, in late summer (2004) and in the following spring (2005). For 28 plots, numbers of reproductive shoots per species were counted in 1-m2 areas and seed rain was estimated using nine sticky traps of 102 cm2 after dry spells. Results The two extreme dry spells in late summer and spring were similar in length and their probability of recurrence. They independently reduced the subsequent reproductive output of the community, while their seasonal timing modified its species composition. Compared to drought in spring, drought in late summer reduced soil moisture more and reduced the number of reproductive shoots of more species. The negative effects of summer drought decreased with species’ rooting depth. The shallow-rooted graminoids showed a consistent susceptibility to summer drought, while legumes and other forbs showed more varied responses to both droughts. Spring drought strongly reduced density (–53%) and species richness (–43%) of the community seed rain, while summer drought had only a marginally significant impact on seed density of graminoids (–44%). Reductions in seed number per shoot vs reproductive shoot density distinguished the impacts of drought with respect to its seasonal timing. Conclusion The essentially negative impact of drought in different seasons on reproductive output suggests that more frequent dry spells could contribute to local plant diversity loss by aggravating seed deficiency in species-rich grassland.