927 resultados para Native Grain Refinement
Resumo:
Rice (Oryza sativa) is the staple food for over half the world's population yet may represent a significant dietary source of inorganic arsenic (As), a nonthreshold, class 1 human carcinogen. Rice grain As is dominated by the inorganic species, and the organic species dimethylarsinic acid (DMA). To investigate how As species are unloaded into grain rice, panicles were excised during grain filling and hydroponically pulsed with arsenite, arsenate, glutathione-complexed As, or DMA. Total As concentrations in flag leaf, grain, and husk, were quantified by inductively coupled plasma mass spectroscopy and As speciation in the fresh grain was determined by x-ray absorption near-edge spectroscopy. The roles of phloem and xylem transport were investigated by applying a +/- stem-girdling treatment to a second set of panicles, limiting phloem transport to the grain in panicles pulsed with arsenite or DMA. The results demonstrate that DMA is translocated to the rice grain with over an order magnitude greater efficiency than inorganic species and is more mobile than arsenite in both the phloem and the xylem. Phloem transport accounted for 90% of arsenite, and 55% of DMA, transport to the grain. Synchrotron x-ray fluorescence mapping and fluorescence microtomography revealed marked differences in the pattern of As unloading into the grain between DMA and arsenite-challenged grain. Arsenite was retained in the ovular vascular trace and DMA dispersed throughout the external grain parts and into the endosperm. This study also demonstrates that DMA speciation is altered in planta, potentially through complexation with thiols.
Resumo:
For the world's population, rice consumption is a major source of inorganic arsenic (As), a nonthreshold class 1 carcinogen. Reducing the amount of total and inorganic As within the rice grain would reduce the exposure risk. In this study, grain As was measured in 76 cultivars consisting of Bangladeshi landraces, improved Bangladesh Rice Research Institute (BRRI) cultivars, and parents of permanent mapping populations grown in two field sites in Bangladesh, Faridpur and Sonargaon, irrigated with As-contaminated tubewell water. Grain As ranged from 0.16 to 0.74 mg kg(-1) at Faridpur and from 0.07 to 0.28 mg kg(-1) at Sonargaon. Highly significant cultivar differences were detected and a significant correlation (r = 0.802) in the grain As between the two field sites was observed, indicating stable genetic differences in As accumulation. The cultivars with the highest concentration of grain As were the Bangladeshi landraces. Landraces with red bran had significantly more grain As than the cultivars with brown bran. The percent of inorganic As decreased linearly with increasing total As, but genetic variation within this trend was identified. A number of local cultivars with low grain As were identified. Some tropical japonica cultivars with low grain As have the potential to be used in breeding programs and genetic studies aiming to identify genes which decrease grain As.
Resumo:
Rice is more elevated in arsenic than all other grain crops tested to date, with whole grain (brown) rice having higher arsenic levels than polished (white). It is reported here that rice bran, both commercially purchased and specifically milled for this study, have levels of inorganic arsenic, a nonthreshold, class 1 carcinogen, reaching concentrations of approximately 1 mg/kg dry weight, around 10-20 fold higher than concentrations found in bulk grain. Although pure rice bran is used as a health food supplement, perhaps of more concern is rice bran solubles, which are marketed as a superfood and as a supplement to malnourished children in international aid programs. Five rice bran solubles products were tested, sourced from the United States and Japan, and were found to have 0.61-1.9 mg/kg inorganic arsenic. Manufactures recommend approximately 20 g servings of the rice bran solubles per day, which equates to a 0.012-0.038 mg intake of inorganic arsenic. There are no maximum concentration levels (MCLs) set for arsenic or its species in food stuffs. EU and U.S. water regulations, set at 0.01 mg/L total or inorganic arsenic, respectively, are based on the assumption that 1 L of water per day is consumed, i.e., 0.01 mg of arsenic/ day. At the manufacturers recommended rice bran solubles consumption rate, inorganic arsenic intake exceeds 0.01 mg/ day, remembering that rice bran solubles are targeted at malnourished children and that actual risk is based on mg kg(-1) day(-1) intake.
Resumo:
A field survey was conducted in arsenic impacted and non-impacted paddies of Bangladesh to assess how arsenic levels in rice (Oryza sativa L) grain are related to soil and shoot concentrations. Ten field sites from an arsenic contaminated tubewell irrigation region (Faridpur) were compared to 10 field sites from a non-affected region (Gazipur). Analysis of the overall data set found that both grain and shoot total arsenic concentrations were highly correlated (P
Resumo:
Paired grain, shoot, and soil of 173 individual sample sets of commercially farmed temperate rice, wheat, and barley were surveyed to investigate variation in the assimilation and translocation of arsenic (As). Rice samples were obtained from the Carmargue (France), Doñana (Spain), Cadiz (Spain), California, and Arkansas. Wheat and barleywere collected from Cornwall and Devon (England) and the east coast of Scotland. Transfer of As from soil to grain was an order of magnitude greater in rice than for wheat and barley, despite lower rates of shoot-to-grain transfer. Rice grain As levels over 0.60 microg g(-1) d. wt were found in rice grown in paddy soil of around only 10 microg g(-1) As, showing that As in paddy soils is problematic with respect to grain As levels. This is due to the high shoot/soil ratio of approximately 0.8 for rice compared to 0.2 and 0.1 for barley and wheat, respectively. The differences in these transfer ratios are probably due to differences in As speciation and dynamics in anaerobic rice soils compared to aerobic soils for barley and wheat. In rice, the export of As from the shoot to the grain appears to be under tight physiological control as the grain/shoot ratio decreases by more than an order of magnitude (from approximately 0.3 to 0.003 mg/kg) and as As levels in the shoots increase from 1 to 20 mg/kg. A down regulation of shoot-to-grain export may occur in wheat and barley, but it was not detected at the shoot As levels found in this survey. Some agricultural soils in southwestern England had levels in excess of 200 microg g(-1) d. wt, although the grain levels for wheat and barley never breached 0.55 microg g(-1) d. wt. These grain levels were achieved in rice in soils with an order of magnitude lower As. Thus the risk posed by As in the human food-chain needs to be considered in the context of anaerobic verses aerobic ecosystems.
Resumo:
Concern has been raised by Bangladeshi and international scientists about elevated levels of arsenic in Bengali food, particularly in rice grain. This is the first inclusive food market-basket survey from Bangladesh, which addresses the speciation and concentration of arsenic in rice, vegetables, pulses, and spices. Three hundred thirty aman and boro rice, 94 vegetables, and 50 pulse and spice samples were analyzed for total arsenic, using inductivity coupled plasma mass spectrometry (ICP-MS). The districts with the highest mean arsenic rice grain levels were all from southwestern Bangladesh:? Faridpur (boro) 0.51 > Satkhira (boro) 0.38 > Satkhira (aman) 0.36 > Chuadanga (boro) 0.32 > Meherpur (boro) 0.29 µg As g-1. The vast majority of food ingested arsenic in Bangladesh diets was found to be inorganic; with the predominant species detected in Bangladesh rice being arsenite (AsIII) or arsenate (AsV) with dimethyl arsinic acid (DMAV) being a minor component. Vegetables, pulses, and spices are less important to total arsenic intake than water and rice. Predicted inorganic arsenic intake from rice is modeled with the equivalent intake from drinking water for a typical Bangladesh diet. Daily consumption of rice with a total arsenic level of 0.08 µg As g-1 would be equivalent to a drinking water arsenic level of 10 µg L-1. Concern has been raised by Bangladeshi and international scientists about elevated levels of arsenic in Bengali food, particularly in rice grain. This is the first inclusive food market-basket survey from Bangladesh, which addresses the speciation and concentration of arsenic in rice, vegetables, pulses, and spices. Three hundred thirty aman and boro rice, 94 vegetables, and 50 pulse and spice samples were analyzed for total arsenic, using inductivity coupled plasma mass spectrometry (ICP-MS). The districts with the highest mean arsenic rice grain levels were all from southwestern Bangladesh:? Faridpur (boro) 0.51 > Satkhira (boro) 0.38 > Satkhira (aman) 0.36 > Chuadanga (boro) 0.32 > Meherpur (boro) 0.29 µg As g-1. The vast majority of food ingested arsenic in Bangladesh diets was found to be inorganic; with the predominant species detected in Bangladesh rice being arsenite (AsIII) or arsenate (AsV) with dimethyl arsinic acid (DMAV) being a minor component. Vegetables, pulses, and spices are less important to total arsenic intake than water and rice. Predicted inorganic arsenic intake from rice is modeled with the equivalent intake from drinking water for a typical Bangladesh diet. Daily consumption of rice with a total arsenic level of 0.08 µg As g-1 would be equivalent to a drinking water arsenic level of 10 µg L-1.
Resumo:
The behaviour of Basalt Fibre Reinforced Polymer (BFRP) loaded perpendicular to glulam timber elements was investigated. It was found that pull-out load increased approximately linearly with the bonded length up to maximum which occurred at a bonded length of 250 mm (~15 times the hole diameter) and did not increase beyond this bonded length. Failure mode of the samples was mostly shear fracture which was located at the cylindrical zone at the timber/adhesive interface. Increased bonded lengths resulted in corresponding decrease in interfacial bond stress. At 250 mm bonded length, the pull-out capacity of the proposed design model was about 2% lower than that of the tests. The results also showed that the bond stress of the theoretical model (at the ascending and descending branches) of the stress–slip curve was approximately 5–10% of that of the experiment.
Resumo:
In order to increase the consumption of wholegrain products or grain products with functional properties, it is important to understand consumer beliefs about such products and the impact of health claims. In a series of consumer studies several differences were found between countries. While consumers in Finland, Italy and the UK saw wholegrain products as having positive attributes, those in Finland had more negative beliefs about refined grain products. Health claims and wholegrain labels increased perceived healthiness but had a less positive impact on likelihood of buying, and in Italy both health claims and wholegrain labels even decreased the likelihood of buying.
Resumo:
Arsenic accumulation in rice grain has been identified as a major problem in some regions of Asia. A study was conducted to investigate the effect of increased organic matter in the soil on the release of arsenic into soil pore water and accumulation of arsenic species within rice grain. It was observed that high concentrations of soil arsenic and organic matter caused a reduction in plant growth and delayed flowering time. Total grain arsenic accumulation was higher in the plants grown in high soil arsenic in combination with high organic matter, with an increase in the percentage of organic arsenic species observed. The results indicate that the application of organic matter should be done with caution in paddy soils which have high soil arsenic, as this may lead to an increase in accumulation of arsenic within rice grains. Results also confirm that flooding conditions substantially increase grain arsenic. (c) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Selenium, an essential micronutrient for humans, is insufficient in dietary intake for millions of people worldwide. Rice as the most popular staple food in the world is one of the dominant selenium (Se) sources for people. The distribution and translocation of Se from soil to grain were investigated in a Se-rich environment in this study. The Se levels in soils ranged widely from 0.5 to 47.7 mg kg(-1). Selenium concentration in rice bran was 1.94 times higher than that in corresponding polished rice. The total Se concentrations in the rice fractions were in the following order: straw > bran > whole grain > polished rice > husk. Significant linear relationships between different rice fractions were observed with each other, and Se in the soil has a linear relationship with different rice fractions as well. Se concentration in rice can easily be predicted by soil Se concentrations or any rice fractions and vice versa according to their linear relationships. In all rice samples for Se speciation, SeMet was the major Se species, followed by MeSeCys and SeCys. The average percentage for SeMet (82.9%) and MeSeCys (6.2%) was similar in the range of total Se from 2.2 to 8.4 mg kg(-1) tested. The percentage of SeCys decreased from 6.3 to 2.8%, although its concentration elevated with the increase in total Se in rice. This could be due to the fact that SeCys is the precursor for the formation of other organic Se compounds. The information obtained may have considerable significance for assessing translocation and accumulation of Se in plant.
Resumo:
Glycation and/or oxidation of LDL may promote diabetic nephropathy. The mitogen-activated protein kinase (MAPK) cascade, which includes extracellular signal-regulated protein kinases (ERKs), modulates cell function. Therefore, we examined the effects of LDL on ERK phosphorylation in cultured rat mesangial cells. In cells exposed to 100 microg/ml native LDL or LDL modified by glycation, and/or mild or marked (copper-mediated) oxidation, ERK activation peaked at 5 min. Five minutes of exposure to 10-100 microg/ml native or modified LDL produced a concentration-dependent (up to sevenfold) increase in ERK activity. Also, 10 microg/ml native LDL and mildly modified LDL (glycated and/or mildly oxidized) produced significantly greater ERK activation than that induced by copper-oxidized LDL +/- glycation (P <0.05). Pretreatment of cells with Src kinase and MAPK kinase inhibitors blocked ERK activation by 50-80% (P <0.05). Native and mildly modified LDL, which are recognized by the native LDL receptor, induced a transient spike of intracellular calcium. Copper-oxidized (+/- glycation) LDL, recognized by the scavenger receptor, induced a sustained rise in intracellular calcium. The intracellular calcium chelator (EGTA/AM) further increased ERK activation by native and mildly modified LDL (P <0.05). These findings demonstrate that native and modified LDL activate ERKs 1 and 2, an early mitogenic signal, in mesangial cells and provide evidence for a potential link between modified LDL and the development of glomerular injury in diabetes.