900 resultados para Nader, Ralph.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The first search at the LHC for the extinction of QCD jet production is presented, using data collected with the CMS detector corresponding to an integrated luminosity of 10.7 fb-1 of proton-proton collisions at a center-of-mass energy of 8 TeV. The extinction model studied in this analysis is motivated by the search for signatures of strong gravity at the TeV scale (terascale gravity) and assumes the existence of string couplings in the strong-coupling limit. In this limit, the string model predicts the suppression of all high-transverse-momentum standard model processes, including jet production, beyond a certain energy scale. To test this prediction, the measured transverse-momentum spectrum is compared to the theoretical prediction of the standard model. No significant deficit of events is found at high transverse momentum. A 95% confidence level lower limit of 3.3 TeV is set on the extinction mass scale.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
With the increase of stakeholders and consequently increase of amount of nancial transaction the study of news investment strategies in the stock market with data mining techniques has been the target of important researches. It allows that great historical data base to be processed and analysed looking for pattern that can be used to take a decision in investments. With the idea of getting pro t more than the real indexs' gain, we propose a strategy method of transactions using rules built by algorithm classi cation. For that, diary historical data of Ibovespa index and Petrobras stocks are organized and processed to nding the most important attribute that act decisively when taking a investment decision.To test the accuracy of proposed rules, a non real portfolio management is created, showing the decisions' performance over the real index and stocks' performance. Following the proposed rules, the results show that the strategy of investment give me back a high return that Stock market's return. The exclusive characteristics of algorithms maximize the gain inside the analysed time allowing to determine the techniques' return and the number of the days necessary to double the initial investment. The best classi er applied on the time series and its use on the propose investments strategy will demand 104 days to double the initial capital
Resumo:
Pós-graduação em Medicina Veterinária - FCAV
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)