929 resultados para NORMALIZED DIFFERENCE VEGETATION INDEX
Resumo:
This paper presents a new voltage stability index based on the tangent vector of the power flow jacobian. This index is capable of providing the relative vulnerability information of the system buses from the point of view of voltage collapse. In an effort to compare this index with a similar index, the popular voltage stability index L is studied and it is shown through system studies that the L index is not a very consistent indicator of the voltage collapse point of the system but is only a reasonable indicator of the vulnerability of the system buses to voltage collapse. We also show that the new index can be used in the voltage stability analysis of radial systems which is not possible with the L index. This is a significant result of this investigation since there is a lot of contemporary interest in distributed generation and microgrids which are by and large radial in nature. Simulation results considering several test systems are provided to validate the results and the computational needs of the proposed scheme is assessed in comparison with other schemes
Resumo:
The study of recession flows offers fundamental insights into basin hydrological processes and, in particular, into the collective behavior of the governing dominant subsurface flows and properties. We use here an existing geomorphological interpretation of recession dynamics, which links the exponent in the classic recession curve -dQ/dt - kQ(alpha) to the geometric properties of the time-varying drainage network to study the general properties of recession curves across a wide variety of river basins. In particular, we show how the parameter k depends on the initial soil moisture state of the basin and can be made to explicitly depend on an index discharge, representative of initial sub-subsurface storage. Through this framework we obtain a non-dimensional, event-independent, recession curve. We subsequently quantify the variability of k across different basins on the basis of their geometry, and, by rescaling, collapse curves from different events and basins to obtain a generalized, or `universal', recession curve. Finally, we analyze the resulting normalized recession curves and explain their universal characteristics, lending further support to the notion that the statistical properties of observed recession curves bear the signature of the geomorphological structure of the networks producing them. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Detection of QRS serves as a first step in many automated ECG analysis techniques. Motivated by the strong similarities between the signal structures of an ECG signal and the integrated linear prediction residual (ILPR) of voiced speech, an algorithm proposed earlier for epoch detection from ILPR is extended to the problem of QRS detection. The ECG signal is pre-processed by high-pass filtering to remove the baseline wandering and by half-wave rectification to reduce the ambiguities. The initial estimates of the QRS are iteratively obtained using a non-linear temporal feature, named the dynamic plosion index suitable for detection of transients in a signal. These estimates are further refined to obtain a higher temporal accuracy. Unlike most of the high performance algorithms, this technique does not make use of any threshold or differencing operation. The proposed algorithm is validated on the MIT-BIH database using the standard metrics and its performance is found to be comparable to the state-of-the-art algorithms, despite its threshold independence and simple decision logic.
Resumo:
We investigate the isentropic index along the saturated vapor line as a correlating parameter with quantities both in the saturated liquid phase and the saturated vapor phase. The relation is established via temperatures such as T-hgmax and T* where the saturated vapor enthalpy and the product of saturation temperature and saturated liquid density attain a maximum, respectively. We obtain that the saturated vapor isentropic index is correlated with these temperatures but also with the saturated liquid Gruneisen parameters at T-hgmax. and T*.
Resumo:
Tuberculosis (TB) is a life threatening disease caused due to infection from Mycobacterium tuberculosis (Mtb). That most of the TB strains have become resistant to various existing drugs, development of effective novel drug candidates to combat this disease is a need of the day. In spite of intensive research world-wide, the success rate of discovering a new anti-TB drug is very poor. Therefore, novel drug discovery methods have to be tried. We have used a rule based computational method that utilizes a vertex index, named `distance exponent index (D-x)' (taken x = -4 here) for predicting anti-TB activity of a series of acid alkyl ester derivatives. The method is meant to identify activity related substructures from a series a compounds and predict activity of a compound on that basis. The high degree of successful prediction in the present study suggests that the said method may be useful in discovering effective anti-TB compound. It is also apparent that substructural approaches may be leveraged for wide purposes in computer-aided drug design.
Resumo:
The Sun has a polar magnetic field which oscillates with the 11 yr sunspot cycle. This polar magnetic field is an important component of the dynamo process which operates in the solar convection zone and produces the sunspot cycle. We have direct systematic measurements of the Sun's polar magnetic field only from about the mid-1970s. There are, however, indirect proxies which give us information about this field at earlier times. The Ca-K spectroheliograms taken at the Kodaikanal Solar Observatory during 1904-2007 have now been digitized with 4k x 4k CCD and have higher resolution (similar to 0.86 arcsec) than the other available historical data sets. From these Ca-K spectroheliograms, we have developed a completely new proxy (polar network index, hereafter PNI) for the Sun's polar magnetic field. We calculate PNI from the digitized images using an automated algorithm and calibrate our measured PNI against the polar field as measured by the Wilcox Solar Observatory for the period 1976-1990. This calibration allows us to estimate the polar fields for the earlier period up to 1904. The dynamo calculations performed with this proxy as input data reproduce reasonably well the Sun's magnetic behavior for the past century.
Resumo:
Dialkyl succinates show a pattern of alternating behavior in their melting points, as the number of C atoms in the alkane side chain increases, unlike in the dialkyl oxalates Joseph et al. (2011). Acta Cryst. B67, 525-534]. Dialkyl succinates with odd numbers of C atoms in the alkyl side chain show higher melting points than the immediately adjacent analogues with even numbers. The crystal structures and their molecular packing have been analyzed for a series of dialkyl succinates with 1 - 4 C atoms in the alkyl side chain. The energy difference (Delta E) between the optimized and observed molecular conformations, density, Kitaigorodskii packing index (KPI) and C-H center dot center dot center dot O interactions are considered to rationalize this behavior. In contrast to the dialkyl oxalates where a larger number of moderately strong C-H center dot center dot center dot O interactions were characteristic of oxalates with elevated melting points, here the molecular packing and the density play a major role in raising the melting point. On moving from oxalate to succinate esters the introduction of the C2 spacer adds two activated H atoms to the asymmetric unit, resulting in the formation of stronger C-H center dot center dot center dot O hydrogen bonds in all succinates. As a result the crystallinity of long-chain alkyl substituted esters improves enormously in the presence of hydrogen bonds from activated donors.
Resumo:
The proportion of chemical elements passing through vegetation prior to being exported in a stream was quantified for a forested tropical watershed(Mule Hole, South India) using an extensive hydrological and geochemical monitoring at several scales. First, a solute annual mass balance was established at the scale of the soil-plant profile for assessing the contribution of canopy interaction and litter decay to the solute fluxes of soil inputs (overland flow) and soil outputs (pore water flow as seepages). Second, based on the respective contributions of overland flow and seepages to the stream flow as estimated by a hydrological lumped model, we assigned the proportion of chemical elements in the stream that transited through the vegetation at both flood event (End Member Mixing Analysis) and seasonal scales. At the scale of the 1D soil-plant profile, leaching from the canopy constituted the main source of K above the ground surface. Litter decay was the main source of Si, whereas alkalinity, Ca and Mg originated in the same proportions from both sources. The contribution of vegetation was negligible for Na. Within the soil, all elements but Na were removed from the pore water in proportions varying from 20% for Cl to 95% for K: The soil output fluxes corresponded to a residual fraction of the infiltration fluxes. The behavior of K, Cl, Ca and Mg in the soil-plant profile can be explained by internal cycling, as their soil output fluxes were similar to the atmospheric inputs. Na was released from soils as a result of Na-plagioclase weathering and accompanied by additional release of Si. Concentration of soil pore water by evapotranspiration might limit the chemical weathering in the soil. Overall, the solute K, Ca, Mg, alkalinity and Si fluxes associated with the vegetation turnover within the small experimental watershed represented 10-15 times the solute fluxes exported by the stream, of which 83-97% transited through the vegetation. One important finding is that alkalinity and Si fluxes at the outlet were not linked to the ``current weathering'' of silicates in this watershed. These results highlight the dual effect of the vegetation cover on the solute fluxes exported from the watershed: On one hand the runoff was limited by evapotranspiration and represented only 10% of the annual rainfall, while on the other hand, 80-90% of the overall solute flux exported by the stream transited through the vegetation. The approach combining geochemical monitoring and accurate knowledge of the watershed hydrological budget provided detailed understanding of several effects of vegetation on stream fluxes: (1) evapotranspiration (limiting), (2) vertical transfer through vegetation from vadose zone to ground surface (enhancing) and (3) redistribution by throughfalls and litter decay. It provides a good basis for calibrating geochemical models and more precisely assessing the role of vegetation on soil processes. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Chiral auxiliaries are used for NMR spectroscopic study of enantiomers. Often the presence of impurities, severe overlap of peaks, excessive line broadening and complex multiplicity pattern restricts the chiral analysis using 1D H-1 NMR spectrum. There are few approaches to resolve the overlapped peaks. One approach is to use suitable chiral auxiliary, which induces large chemical shift difference between the discriminated peaks (Delta delta(R,S)) and minimize the overlap. Another direction of approach is to design appropriate NMR experiments to circumvent some of these problems, viz, enhancing spectral resolution, unravelling the superimposed spectra of enantiomers, and reduction of spectral complexity. Large number of NMR techniques, such as two dimensional selective F-1 decoupling, RES-TOCSY, multiple quantum detection, frequency selective homodecoupling, band selective homodecoupling, broadband homodecoupling, etc. have been reported for such a purpose. Many of these techniques have aided in chiral analysis for molecules of diverse functionality in the presence of chiral auxiliaries. The present review summarizes the recently reported NMR experimental methodologies, with a special emphasis on the work carried out in authors' laboratory.
Resumo:
The intersection of the ten-dimensional fuzzy conifold Y-F(10) with S-F(5) x S-F(5) is the compact eight-dimensional fuzzy space X-F(8). We show that X-F(8) is (the analogue of) a principal U(1) x U(1) bundle over fuzzy SU(3) / U(1) x U(1)) ( M-F(6)). We construct M-F(6) using the Gell-Mann matrices by adapting Schwinger's construction. The space M-F(6) is of relevance in higher dimensional quantum Hall effect and matrix models of D-branes. Further we show that the sections of the monopole bundle can be expressed in the basis of SU(3) eigenvectors. We construct the Dirac operator on M-F(6) from the Ginsparg-Wilson algebra on this space. Finally, we show that the index of the Dirac operator correctly reproduces the known results in the continuum.
Resumo:
Rapid and invasive urbanization has been associated with depletion of natural resources (vegetation and water resources), which in turn deteriorates the landscape structure and conditions in the local environment. Rapid increase in population due to the migration from rural areas is one of the critical issues of the urban growth. Urbanisation in India is drastically changing the land cover and often resulting in the sprawl. The sprawl regions often lack basic amenities such as treated water supply, sanitation, etc. This necessitates regular monitoring and understanding of the rate of urban development in order to ensure the sustenance of natural resources. Urban sprawl is the extent of urbanization which leads to the development of urban forms with the destruction of ecology and natural landforms. The rate of change of land use and extent of urban sprawl can be efficiently visualized and modelled with the help of geo-informatics. The knowledge of urban area, especially the growth magnitude, shape geometry, and spatial pattern is essential to understand the growth and characteristics of urbanization process. Urban pattern, shape and growth can be quantified using spatial metrics. This communication quantifies the urbanisation and associated growth pattern in Delhi. Spatial data of four decades were analysed to understand land over and land use dynamics. Further the region was divided into 4 zones and into circles of 1 km incrementing radius to understand and quantify the local spatial changes. Results of the landscape metrics indicate that the urban center was highly aggregated and the outskirts and the buffer regions were in the verge of aggregating urban patches. Shannon's Entropy index clearly depicted the outgrowth of sprawl areas in different zones of Delhi. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Discrete polymatroids are the multi-set analogue of matroids. In this paper, we explore the connections between linear index coding and representable discrete polymatroids. The index coding problem involves a sender which generates a set of messages X = {x(1), x(2), ... x(k)} and a set of receivers R which demand messages. A receiver R is an element of R is specified by the tuple (x, H) where x. X is the message demanded by R and H subset of X \textbackslash {x} is the side information possessed by R. It is first shown that a linear solution to an index coding problem exists if and only if there exists a representable discrete polymatroid satisfying certain conditions which are determined by the index coding problem considered. El Rouayheb et. al. showed that the problem of finding a multi-linear representation for a matroid can be reduced to finding a perfect linear index coding solution for an index coding problem obtained from that matroid. Multi-linear representation of a matroid can be viewed as a special case of representation of an appropriate discrete polymatroid. We generalize the result of El Rouayheb et. al. by showing that the problem of finding a representation for a discrete polymatroid can be reduced to finding a perfect linear index coding solution for an index coding problem obtained from that discrete polymatroid.
Resumo:
Purpose: Proposing an image reconstruction technique, algebraic reconstruction technique-refraction correction (ART-rc). The proposed method takes care of refractive index mismatches present in gel dosimeter scanner at the boundary, and also corrects for the interior ray refraction. Polymer gel dosimeters with high dose regions have higher refractive index and optical density compared to the background medium, these changes in refractive index at high dose results in interior ray bending. Methods: The inclusion of the effects of refraction is an important step in reconstruction of optical density in gel dosimeters. The proposed ray tracing algorithm models the interior multiple refraction at the inhomogeneities. Jacob's ray tracing algorithm has been modified to calculate the pathlengths of the ray that traverses through the higher dose regions. The algorithm computes the length of the ray in each pixel along its path and is used as the weight matrix. Algebraic reconstruction technique and pixel based reconstruction algorithms are used for solving the reconstruction problem. The proposed method is tested with numerical phantoms for various noise levels. The experimental dosimetric results are also presented. Results: The results show that the proposed scheme ART-rc is able to reconstruct optical density inside the dosimeter better than the results obtained using filtered backprojection and conventional algebraic reconstruction approaches. The quantitative improvement using ART-rc is evaluated using gamma-index. The refraction errors due to regions of different refractive indices are discussed. The effects of modeling of interior refraction in the dose region are presented. Conclusions: The errors propagated due to multiple refraction effects have been modeled and the improvements in reconstruction using proposed model is presented. The refractive index of the dosimeter has a mismatch with the surrounding medium (for dry air or water scanning). The algorithm reconstructs the dose profiles by estimating refractive indices of multiple inhomogeneities having different refractive indices and optical densities embedded in the dosimeter. This is achieved by tracking the path of the ray that traverses through the dosimeter. Extensive simulation studies have been carried out and results are found to be matching that of experimental results. (C) 2015 American Association of Physicists in Medicine.
Resumo:
A finite difference method for a time-dependent singularly perturbed convection-diffusion-reaction problem involving two small parameters in one space dimension is considered. We use the classical implicit Euler method for time discretization and upwind scheme on the Shishkin-Bakhvalov mesh for spatial discretization. The method is analysed for convergence and is shown to be uniform with respect to both the perturbation parameters. The use of the Shishkin-Bakhvalov mesh gives first-order convergence unlike the Shishkin mesh where convergence is deteriorated due to the presence of a logarithmic factor. Numerical results are presented to validate the theoretical estimates obtained.
Resumo:
The inversion of canopy reflectance models is widely used for the retrieval of vegetation properties from remote sensing. This study evaluates the retrieval of soybean biophysical variables of leaf area index, leaf chlorophyll content, canopy chlorophyll content, and equivalent leaf water thickness from proximal reflectance data integrated broadbands corresponding to moderate resolution imaging spectroradiometer, thematic mapper, and linear imaging self scanning sensors through inversion of the canopy radiative transfer model, PROSAIL. Three different inversion approaches namely the look-up table, genetic algorithm, and artificial neural network were used and performances were evaluated. Application of the genetic algorithm for crop parameter retrieval is a new attempt among the variety of optimization problems in remote sensing which have been successfully demonstrated in the present study. Its performance was as good as that of the look-up table approach and the artificial neural network was a poor performer. The general order of estimation accuracy for para-meters irrespective of inversion approaches was leaf area index > canopy chlorophyll content > leaf chlorophyll content > equivalent leaf water thickness. Performance of inversion was comparable for broadband reflectances of all three sensors in the optical region with insignificant differences in estimation accuracy among them.