973 resultados para NONEQUILIBRIUM PHASE-TRANSITIONS
Resumo:
Cryocoolers have been progressively replacing the use of the stored cryogens in cryogenic chains used for detector cooling, thanks to their higher and higher reliability. However, the mechanical vibrations, the electromagnetic interferences and the temperature fluctuations inherent to their functioning could reduce the sensor’s sensitivity. In order to minimize this problem, compact thermal energy storage units (ESU) are studied, devices able to store thermal energy without significant temperature increase. These devices can be used as a temporary cold source making it possible to turn the cryocooler OFF providing a proper environment for the sensor. A heat switch is responsible for the thermal decoupling of the ESU from the cryocooler’s temperature that increases when turned OFF. In this work, several prototypes working around 40 K were designed, built and characterized. They consist in a low temperature cell that contains the liquid neon connected to an expansion volume at room temperature for gas storage during the liquid evaporation phase. To turn this system insensitive to the gravity direction, the liquid is retained in the low temperature cell by capillary effect in a porous material. Thanks to pressure regulation of the liquid neon bath, 900 J were stored at 40K. The higher latent heat of the liquid and the inexistence of triple point transitions at 40 K turn the pressure control during the evaporation a versatile and compact alternative to an ESU working at the triple point transitions. A quite compact second prototype ESU directly connected to the cryocooler cold finger was tested as a temperature stabilizer. This device was able to stabilize the cryocooler temperature ((≈ 40K ±1 K) despite sudden heat bursts corresponding to twice the cooling power of the cryocooler. This thesis describes the construction of these devices as well as the tests performed. It is also shown that the thermal model developed to predict the thermal behaviour of these devices, implemented as a software,describes quite well the experimental results. Solutions to improve these devices are also proposed.
Resumo:
Cryocoolers have been progressively replacing the use of the stored cryogens in cryogenic chains used for detector cooling, thanks to their higher and higher reliability. However, the mechanical vibrations, the electromagnetic interferences and the temperature fluctuations inherent to their functioning could reduce the sensor’s sensitivity. In order to minimize this problem, compact thermal energy storage units (ESU) are studied, devices able to store thermal energy without significant temperature increase. These devices can be used as a temporary cold source making it possible to turn the cryocooler OFF providing a proper environment for the sensor. A heat switch is responsible for the thermal decoupling of the ESU from the cryocooler’s temperature that increases when turned OFF. In this work, several prototypes working around 40 K were designed, built and characterized. They consist in a low temperature cell that contains the liquid neon connected to an expansion volume at room temperature for gas storage during the liquid evaporation phase. To turn this system insensitive to the gravity direction, the liquid is retained in the low temperature cell by capillary effect in a porous material. Thanks to pressure regulation of the liquid neon bath, 900 J were stored at 40K. The higher latent heat of the liquid and the inexistence of triple point transitions at 40 K turn the pressure control during the evaporation a versatile and compact alternative to an ESU working at the triple point transitions. A quite compact second prototype ESU directly connected to the cryocooler cold finger was tested as a temperature stabilizer. This device was able to stabilize the cryocooler temperature ((≈ 40K ±1 K) despite sudden heat bursts corresponding to twice the cooling power of the cryocooler. This thesis describes the construction of these devices as well as the tests performed. It is also shown that the thermal model developed to predict the thermal behaviour of these devices,implemented as a software, describes quite well the experimental results. Solutions to improve these devices are also proposed.
Resumo:
The income support programs are created with the purpose of fighting both, the poverty trap and the inactivity trap. The balance between both is fragile and hard to find. Thus, the goal of this work is to contribute to solve this issue by finding how income support programs, particularly the Portuguese RSI, affect transitions to employment. This is made through duration analysis, namely using Cox and Competing Risks models. A particular feature is introduced in this work as it incorporates the possibility of Defective Risks. The estimated hazard elasticity with respect to the amount of RSI received for individuals who move to employment is -0,41. More than a half of RSI receivers stays for more than a year and the probability of never leaving to employment is 44%. The results appear to indicate that RSI has affected negatively transitions to employment.
Resumo:
INTRODUCTION: Authors describe human schistosomal granuloma in late chronic phase, from the morphological and evolutionary viewpoints. METHODS: The study was based on a histological analysis of two fragments obtained from a surgical biopsy of peritoneum and large intestine of a 42-year-old patient, with a pseudotumoral form mimicking a peritoneal carcinomatosis associated to the schistosomiasis hepatointestinal form. RESULTS: Two hundred and three granulomas were identified in the pseudotumor and 27 in the intestinal biopsy, with similar morphological features, most in the late chronic phase, in fibrotic healing. A new structural classification was suggested for granulomas: zone 1 (internal), 2 (intermediate) and 3 (external). CONCLUSIONS: Regarding granuloma as a whole, we may conclude that fibrosis is likely to be controlled by different and independent mechanisms in the three zones of the granuloma. Lamellar fibrosis in zone 3 seems to be controlled by matrix mesenchymal cells (fibroblasts and myoepithelial cells) and by inflammatory exudate cells (lymphocytes, plasmocytes, neutrophils, eosinophils). Annular fibrosis in zone 2, comprising a dense fibrous connective tissue, with few cells in the advanced phase, would be controlled by epithelioid cells involving zone 1 in recent granulomas. In zone 1, replacing periovular necrosis, an initialy loose and tracery connective neoformation, housing stellate cells or with fusiform nuclei, a dense paucicellular nodular connctive tissue emerges, probably induced by fibroblasts. In several granulomas, one of the zones is missing and granuloma is represented by two of them: Z3 and Z2, Z3 and Z1 or Z2 and Z1 and, ultimately, by a scar.
Resumo:
The evolution of receiver architectures, built in modern CMOS technologies, allows the design of high efficient receivers. A key block in modern receivers is the oscillator. The main objective of this thesis is to design a very low power and low area 8-Phase Ring Oscillator for biomedical applications (ISM and WMTS bands). Oscillators with multiphase outputs and variable duty cycles are required. In this thesis we are focused in 12.5% and 50% duty-cycles approaches. The proposed circuit uses eight inverters in a ring structure, in order to generate the output duty cycle of 50%. The duty cycle of 1/8 is achieved through the combination of the longer duty cycle signals in pairs, using, for this purpose, NAND gates. Since the general application are not only the wireless communications context, as well as industrial, scientific and medical plans, the 8-Phase Oscillator is simulated to be wideband between 100 MHz and 1 GHz, and be able to operate in the ISM bands (447 MHz-930 MHz) and WMTS (600 MHz). The circuit prototype is designed in UMC 130 nm CMOS technology. The maximum value of current drawn from a DC power source of 1.2 V, at a maximum frequency of 930 MHz achieved, is 17.54 mA. After completion of the oscillator layout studied (occupied area is 165 μm x 83 μm). Measurement results confirm the expected operating range from the simulations, and therefore, that the oscillator fulfil effectively the goals initially proposed in order to be used as Local Oscillator in RF Modern Receivers.
Resumo:
Introduction Parenteral antimony-based compounds are still the standard of care for cutaneous leishmaniasis (CL) treatment in many countries, despite their high toxicity. Previous studies showed that oral azithromycin could be an option for CL treatment. The aim of this study was to evaluate efficacy and safety of oral azithromycin (AZ) for CL treatment compared with injectable meglumine antimoniate (MA). Methods This was a randomized, open-label, 2-arm, non-inferiority clinical trial. Treatment-naïve patients with localized CL were treated with MA (15mg/kg/day up to 1,215mg) or AZ (500mg/day) during 20 consecutive days. The primary efficacy end point was a CL cure 90 days after treatment completion. The analysis was performed with intention-to-treat (ITT) and per protocol (PP) analyses. After an anticipated interim analysis, the study was interrupted due to the high failure rate in the azithromycin group. Results Twenty-four volunteers were included in each group. The MA group had a higher cure rate than the AZ group with the ITT and PP analyses, which were 54.2% versus 20.8% [relative risk (RR) 1.97; 95% confidence intervals (95%CI) 1.13-3.42] and 72.2% versus 23.8% (RR 3.03; 95%CI 1.34-6.87), respectively. No unexpected adverse events were observed. Conclusions Azithromycin is ineffective for CL treatment and does not seem to have a role in the therapeutic arsenal for CL.
Resumo:
ABSTRACTA woman had been followed since 1957 for acute phase Chagas disease. Parasitological and serological tests were positive, and treatment included benznidazole in 1974. Following treatment, parasitological test results were negative and conventional serology remained positive until 1994, with subsequent discordant results (1995-1997). The results became consistently negative since 1999. She had an indeterminate chronic form until 1974. Only two minor and transitory nonspecific alterations on electrocardiogram were noted, with the last nine records normal until June 2014. This case confirms the possibility of curing chronic disease and suggests the benefit of specific treatments for preventing long-term morbidity.
Resumo:
This paper presents a comprehensive comparison of a current-source converter and a voltage-source converter for three-phase electric vehicle (EV) fast battery chargers. Taking into account that the current-source converter (CSC) is a natural buck-type converter, the output voltage can assume a wide range of values, which varies between zero and the maximum instantaneous value of the power grid phase-to-phase voltage. On the other hand, taking into account that the voltage-source converter (VSC) is a natural boost-type converter, the output voltage is always greater than the maximum instantaneous value of the power grid phase-to-phase voltage, and consequently, it is necessary to use a dc-dc buck-type converter for applications as EV fast battery chargers. Along the paper is described in detail the principle of operation of both the CSC and the VSC for EV fast chargers, as well as the main equations of the power theory and current control strategies. The comparison between both converters is mainly established in terms of the total harmonic distortion of the grid current and the estimated efficiency for a range of operation between 10 kW and 50 kW.
Resumo:
This paper presents a three-phase three-level fast battery charger for electric vehicles (EVs) based in a current-source converter (CSC). Compared with the traditional voltage-source converters used for fast battery chargers, the CSC can be seen as a natural buck-type converter, i.e., the output voltage can assume a wide range of values, which varies between zero and the maximum instantaneous value of the power grid phase-to-phase voltage. Moreover, using the CSC it is not necessary to use a dc-dc back-end converter in the battery side, and it is also possible to control the grid current in order to obtain a sinusoidal waveform, and in phase with the power grid voltage (unitary power factor). Along the paper is described in detail the proposed CSC for EVs fast battery charging systems: the circuit topology, the power control theory, the current control strategy and the grid synchronization algorithm. Several simulation results of the EV fast battery charger operating with a maximum power of 50 kW are presented.
Resumo:
This paper presents the proposal of a three phase current source shunt active power filter (CS-SAPF) with photovoltaic grid interface. The proposed system combines the compensation of reactive power and harmonics with the injection of energy from a solar photovoltaic array into the electrical power grid. The proposed equipment presents the advantage of giving good use to the current source inverter, even when the solar photovoltaic array is not producing energy. The paper describes the control system of the CS SAPF, the energy injection control strategy, and the current harmonics and power factor compensation strategy. Simulation results to assess the performance of the proposed system are also presented.
Resumo:
The construction industry is responsible for high energy and raw materials consumption. Thus, it is important to minimize the high energy consumption by taking advantage of renewable energy sources and reusing industrial waste, decreasing the extraction of natural materials. The mortars with incorporation of phase change materials (PCM) have the ability to regulate the temperature inside buildings, contributing to the thermal comfort and reduction of the use of heating and cooling equipment, using only the energy supplied by the sun. The simultaneous incorporation of PCM and fly ash (FA) can reduce the energy consumption and the amount of materials landfilled. However, the addition of these materials in mortars modifies its characteristics. The main purpose of this study was the production and characterization in the fresh and hardened state of mortars with incorporation of different contents of PCM and FA. The binders studied were aerial lime, hydraulic lime, gypsum and cement. The proportion of PCM studied was 0%, 20%, 40% and 60% of the mass of the sand. The content of fly ash added to the mortars was 0%, 20%, 40% and 60% of the mass of the binder. It was possible to observe that the incorporation of PCM and fly ash in mortars caused differences in properties such as workability, microstructure, water absorption, compressive strength, flexural strength and adhesion.
Resumo:
This paper assesses the feasibility of impregnation/encasement of phase change materials (PCMs) in lightweight aggregates (LWAs). An impregnation process was adopted to carry out the encasement study of two different PCMs in four different LWAs. The leakage of the impregnated/encased PCMs was studied when they were submitted to freeze/thawing and oven drying tests, separately. The results confirmed that, the impregnation/encasement method is effective with respect to the large thermal energy storage density, and can be suitable for applications were PCMs cannot be incorporated directly such as asphalt road pavements.
Resumo:
The Gibbs free energy of transfer of a methylene group, G*(CH2), is reported as a measure of the relative hydrophobicity of the equilibrium phases. Furthermore, G*(CH2) is a characteristic parameter of each tie-line, and for that reason can be used for comparing different tie-lines of a given aqueous two-phase system (ATPS) or even to establish comparisons among different ATPSs. In this work, the partition coefficients of a series of four dinitrophenylated-amino acids were experimentally determined, at 23 °C, in five different tie-lines of PEG8000(sodium or potassium) citrate ATPSs. G*(CH2) values were calculated from the partition coefficients and used to evaluate the relative hydrophobicity of the equilibrium phases. PEG8000potassium citrate ATPSs presented larger relative hydrophobicity than PEG8000sodium citrate ATPSs. Furthermore, the results obtained indicated that the PEG-rich phase (top phase) has higher affinity to participate in hydrophobic hydration interactions than the salt-rich phase (bottom phase).