954 resultados para NIR (Near Infrared)


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Color light therapy is a therapeutic method in complementary medicine. In color therapy, light of two contrasting colors is often applied in a sequential order. The aim of this study was to investigate possible physiological effects, i.e., changes in the blood volume and oxygenation in the brain and calf muscle of healthy subjects who were exposed to red and blue light in sequential order. The hypothesis was that if a subject is first exposed to blue and then red light, the effect of the red light will be enhanced due to the contrastingly different characteristics of the two colors. The same was expected for blue light, if first exposing a subject to red and then to blue light. Twelve healthy volunteers (six male, six female) were measured twice on two different days by near-infrared spectroscopy during exposure to colored light. Two sequences of colored light were applied in a controlled, randomized, crossover design: first blue, then red, and vice versa. For the brain and muscle, the results showed no significant differences in blood volume and oxygenation between the two sequences, and a high interindividual physiological variability. Thus, the hypothesis had to be rejected. Comparing these data to results from a previous study, where subjects were exposed to blue and red light without sequential color changes, shows that the results of the current study appear to be similar to those of red light exposure. This may indicate that the exposure to red light was preponderant and thus effects of blue light were outweighed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Sleep-disordered breathing (SDB) negatively impacts stroke outcome. Near-infrared spectroscopy showed the acute cerebral hemodynamic effects of SDB.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim was to investigate the effect of different speech tasks, i.e. recitation of prose (PR), alliteration (AR) and hexameter (HR) verses and a control task (mental arithmetic (MA) with voicing of the result on end-tidal CO2 (PETCO2), cerebral hemodynamics and oxygenation. CO2 levels in the blood are known to strongly affect cerebral blood flow. Speech changes breathing pattern and may affect CO2 levels. Measurements were performed on 24 healthy adult volunteers during the performance of the 4 tasks. Tissue oxygen saturation (StO2) and absolute concentrations of oxyhemoglobin ([O2Hb]), deoxyhemoglobin ([HHb]) and total hemoglobin ([tHb]) were measured by functional near-infrared spectroscopy (fNIRS) and PETCO2 by a gas analyzer. Statistical analysis was applied to the difference between baseline before the task, 2 recitation and 5 baseline periods after the task. The 2 brain hemispheres and 4 tasks were tested separately. A significant decrease in PETCO2 was found during all 4 tasks with the smallest decrease during the MA task. During the recitation tasks (PR, AR and HR) a statistically significant (p < 0.05) decrease occurred for StO2 during PR and AR in the right prefrontal cortex (PFC) and during AR and HR in the left PFC. [O2Hb] decreased significantly during PR, AR and HR in both hemispheres. [HHb] increased significantly during the AR task in the right PFC. [tHb] decreased significantly during HR in the right PFC and during PR, AR and HR in the left PFC. During the MA task, StO2 increased and [HHb] decreased significantly during the MA task. We conclude that changes in breathing (hyperventilation) during the tasks led to lower CO2 pressure in the blood (hypocapnia), predominantly responsible for the measured changes in cerebral hemodynamics and oxygenation. In conclusion, our findings demonstrate that PETCO2 should be monitored during functional brain studies investigating speech using neuroimaging modalities, such as fNIRS, fMRI to ensure a correct interpretation of changes in hemodynamics and oxygenation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BODIPY (4,4-Difluoro-3a,4a-diaza-s-indacene) dyes have gained lots of attention in application of fluorescence sensing and imaging in recent years because they possess many distinctive and desirable properties such as high extinction coefficient, narrow absorption and emission bands, high quantum yield and low photobleaching effect. However, most of BODIPY-based fluorescent probes have very poor solubilities in aqueous solution, emit less than 650 nm fluorescence that can cause cell and tissue photodamages compared with bio-desirable near infrared (650-900 nm) light. These undesirable properties extremely limit the applications of BODIPY-based fluorescent probes in sensing and imaging applications. In order to overcome these drawbacks, we have developed a very effective strategy to prepare a series of neutral highly water- soluble BODIPY dyes by enhancing the water solubilities of BODIPY dyes via incorporation of tri(ethylene glycol)methyl ether (TEG) and branched oligo(ethylene glycol)methyl ether (BEG) residues onto BODIPY dyes at 1,7-, 2,6-, 3,5-, 4- and meso- positions. We also have effectively tuned absorptions and emissions of BOIDPY dyes to red, deep red and near infrared regions via significant extension of π-conjugation of BODIPY dyes by condensation reactions of aromatic aldehydes with 2,6-diformyl BODIPY dyes at 1,3,5,7-positions. Based on the foundation that we built for enhancing water solubility and tuning wavelength, we have designed and developed a series of water-soluble, BODIPY-based fluorescent probes for sensitive and selective sensing and imaging of cyanide, Zn (II) ions, lysosomal pH and cancer cells. We have developed three BODIPY-based fluorescent probes for sensing of cyanide ions by incorporating indolium moieties onto the 6-position of TEG- or BEG-modified BOIDPY dyes. Two of them are highly water-soluble. These fluorescent probes showed selective and fast ratiometric fluorescent responses to cyanide ions with a dramatic fluorescence color change from red to green accompanying a significant increase in fluorescent intensity. The detection limit was measured as 0.5 mM of cyanide ions. We also have prepared three highly water-soluble fluorescent probes for sensing of Zn (II) ions by introducing dipicoylamine (DPA, Zn ion chelator) onto 2- and/or 6-positions of BEG-modified BODIPY dyes. These probes showed selective and sensitive responses to Zn (II) ion in the range from 0.5 mM to 24 mM in aqueous solution at pH 7.0. Particularly, one of the probes displayed ratiometric responses to Zn (II) ions with fluorescence quenching at 661 nm and fluorescence enhancement at 521 nm. This probe has been successfully applied to the detection of intracellular Zn (II) ions inside the living cells. Then, we have further developed three acidotropic, near infrared emissive BODIPY- based fluorescent probes for detection of lysosomal pH by incorporating piperazine moiety at 3,5-positions of TEG- or BEG-modified BODIPY dyes as parts of conjugation. The probes have low auto-fluorescence at physiological neutral condition while their fluorescence intensities will significant increase at 715 nm when pH shift to acidic condition. These three probes have been successfully applied to the in vitro imaging of lysosomes inside two types of living cells. At the end, we have synthesized one water- soluble, near infrared emissive cancer cell targetable BODIPY-based fluorescent polymer bearing cancer homing peptide (cRGD) residues for cancer cell imaging applications. This polymer exhibited excellent water-solubility, near infrared emission (712 nm), good biocompatibility. It also showed low nonspecific interactions to normal endothelial cells and can effectively detect breast tumor cells.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

OBJECTIVE: The primary objective of this nationwide survey carried out in department of cardiac anesthesia in Germany was to identify current practice with regard to neuromonitoring und neuroprotection. METHODOLOGY: The data are based on a questionnaire sent out to all departments of cardiac anesthesia in Germany between October 2007 und January 2008. The anonymized questionnaire contained 26 questions about the practice of preoperative evaluation of cerebral vessels, intra-operative use of neuromonitoring, the nature und application of cerebral protective measures, perfusion management during cardiopulmonary bypass, postoperative evaluation of neurological status, and training in the field of cerebral monitoring. RESULTS: Of the 80 mailed questionnaires 55% were returned and 90% of department evaluated cerebral vessels preoperatively with duplex ultrasound. The methods used for intra-operative neuromonitoring are electroencephalography (EEG, 60%) for type A dissections (38.1%), for elective surgery on the thoracic and thoraco-abdominal aorta (34.1% and 31.6%, respectively) and in carotid surgery (43.2%) near infrared spectroscopy (40%), evoked potentials (30%) and transcranial Doppler sonography (17.5%), with some centers using combined methods. In most departments the central nervous system is not subjected to monitoring during bypass surgery, heart valve surgery, or minimally invasive surgery. Cerebral protective measures used comprise patient cooling on cardio-pulmonary bypass (CPB 100%), extracorporeal cooling of the head (65%) and the administration of corticosteroids (58%), barbiturates (50%) and antiepileptic drugs (10%). Neuroprotective anesthesia consists of administering inhalation anesthetics (32.5%; sevoflurane 76.5%) and intravenous anesthesia (20%; propofol and barbiturates each accounting for 46.2%). Of the departments 72.5% cool patients as a standard procedure for surgery involving cardiovascular arrest and 37.5% during all surgery using CPB. In 84.6% of department CPB flow equals calculated cardiac output (CO) under normothermia, while the desired mean arterial pressure (MAP) varies between 60 and 70 mmHg (43.9%) and between 50 and 60 mmHg (41.5%), respectively. At body temperatures less than 18 degrees C CPB flow is reduced below the calculated CO (70%) while 27% of departments use normothermic flow rates. The preferred MAP under hypothermia is between 50 and 60 mmHg (59%). The results of intra-operative neuromonitoring are documented on the anesthesia record (77%). In 42.5% of the departments postoperative neurological function is estimated by the anesthesiologist. Continuing education sessions pertaining to neuromonitoring are organized on a regular basis in 32.5% of the departments and in 37.5% individual physicians are responsible for their own neuromonitoring education. CONCLUSION: The present survey data indicate that neuromonitoring and neuroprotective therapy during CPB is not standardized in cardiac anesthesiology departments in Germany. The systemic use of available methods to implement multimodal neuromonitoring would be desirable.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Doppler Optical Coherence Tomography (DOCT) is a biomedical imaging technique that allows simultaneous structural imaging and flow monitoring inside biological tissues and materials with spatial resolution in the micrometer scale. It has recently been applied to the characterization of microfluidic systems. Structural and flow imaging of novel microfluidics platforms for cytotoxicologic applications were obtained with a real-time, Near Infrared Spectral Domain DOCT system. Characteristics such as flow homogeneity in the chamber, which is one of the most important parameters for cell culture, are investigated. OCT and DOCT images were used to monitor flow inside a specific platform that is based on microchannel division for a better flow homogeneity. In particular, the evolution of flow profile at the transition between the microchannel structure and the chamber is studied.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The response of atmospheric chemistry and dynamics to volcanic eruptions and to a decrease in solar activity during the Dalton Minimum is investigated with the fully coupled atmosphere–ocean chemistry general circulation model SOCOL-MPIOM (modeling tools for studies of SOlar Climate Ozone Links-Max Planck Institute Ocean Model) covering the time period 1780 to 1840 AD. We carried out several sensitivity ensemble experiments to separate the effects of (i) reduced solar ultra-violet (UV) irradiance, (ii) reduced solar visible and near infrared irradiance, (iii) enhanced galactic cosmic ray intensity as well as less intensive solar energetic proton events and auroral electron precipitation, and (iv) volcanic aerosols. The introduced changes of UV irradiance and volcanic aerosols significantly influence stratospheric dynamics in the early 19th century, whereas changes in the visible part of the spectrum and energetic particles have smaller effects. A reduction of UV irradiance by 15%, which represents the presently discussed highest estimate of UV irradiance change caused by solar activity changes, causes global ozone decrease below the stratopause reaching as much as 8% in the midlatitudes at 5 hPa and a significant stratospheric cooling of up to 2 °C in the mid-stratosphere and to 6 °C in the lower mesosphere. Changes in energetic particle precipitation lead only to minor changes in the yearly averaged temperature fields in the stratosphere. Volcanic aerosols heat the tropical lower stratosphere, allowing more water vapour to enter the tropical stratosphere, which, via HOx reactions, decreases upper stratospheric and mesospheric ozone by roughly 4%. Conversely, heterogeneous chemistry on aerosols reduces stratospheric NOx, leading to a 12% ozone increase in the tropics, whereas a decrease in ozone of up to 5% is found over Antarctica in boreal winter. The linear superposition of the different contributions is not equivalent to the response obtained in a simulation when all forcing factors are applied during the Dalton Minimum (DM) – this effect is especially well visible for NOx/NOy. Thus, this study also shows the non-linear behaviour of the coupled chemistry-climate system. Finally, we conclude that especially UV and volcanic eruptions dominate the changes in the ozone, temperature and dynamics while the NOx field is dominated by the energetic particle precipitation. Visible radiation changes have only very minor effects on both stratospheric dynamics and chemistry.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The ancient southern highlands on Mars (~3.5 Gyr old) contain > 600 regions that display spectral evidence in the infrared for the presence of chloride-bearing materials. Many of these locations were previously reported to display polygonal cracking patterns. We studied more than 80 of the chloride-bearing terrains using high-resolution (0.25-0.5 m/pixel) images, as well as near-infrared spectral data, to characterize the surface textures and the associated cracking patterns and mineralogies. Our study indicates that ~75% of the studied locations display polygonal cracks that resemble desiccation cracks, while some resemble salt expansion/thrust polygons. Furthermore, we detect, spectrally, the presence of smectites in association with ~30% of the studied fractured terrains. We note that smectites are a special class of swelling clay minerals that can induce formation of large desiccation cracks. As such, we suggest that the cracking patterns are indicative of the presence of smectite phyllosilicates even in the absence of spectral confirmation. Our results suggest that many chloride-bearing terrains have a lacustrine origin and a geologic setting similar to playas on Earth. Such locations would have contained ephemeral lakes that may have undergone repeated cycles of desiccation and recharging by a near-surface fluctuating water table in order to account for the salt-phyllosilicates associations. These results have notable implications for the ancient hydrology of Mars. We propose that the morphologies and sizes of the polygonal cracks can be used as paleoenvironmental, as well as lithological, indicators that could be helpful in planning future missions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report on oxygenation changes noninvasively recorded by multichannel continuous-wave near infrared spectroscopy (CW-NIRS) during endovascular neuroradiologic interventions requiring temporary balloon occlusion of arteries supplying the cerebral circulation. Digital subtraction angiography (DSA) provides reference data on the site, timing, and effectiveness of the flow stagnation as well as on the amount and direction of collateral circulation. This setting allows us to relate CW-NIRS findings to brain specific perfusion changes. We focused our analysis on the transition from normal perfusion to vessel occlusion, i.e., before hypoxia becomes clinically apparent. The localization of the maximal response correlated either with the core (occlusion of the middle cerebral artery) or with the watershed areas (occlusion of the internal carotid artery) of the respective vascular territories. In one patient with clinically and angiographically confirmed insufficient collateral flow during carotid artery occlusion, the total hemoglobin concentration became significantly asymmetric, with decreased values in the ipsilateral watershed area and contralaterally increased values. Multichannel CW-NIRS monitoring might serve as an objective and early predictive marker of critical perfusion changes during interventions-to prevent hypoxic damage of the brain. It also might provide valuable human reference data on oxygenation changes as they typically occur during acute stroke.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The delineation of shifting cultivation landscapes using remote sensing in mountainous regions is challenging. On the one hand, there are difficulties related to the distinction of forest and fallow forest classes as occurring in a shifting cultivation landscape in mountainous regions. On the other hand, the dynamic nature of the shifting cultivation system poses problems to the delineation of landscapes where shifting cultivation occurs. We present a two-step approach based on an object-oriented classification of Advanced Land Observing Satellite, Advanced Visible and Near-Infrared Spectrometer (ALOS AVNIR) and Panchromatic Remote-sensing Instrument for Stereo Mapping (ALOS PRISM) data and landscape metrics. When including texture measures in the object-oriented classification, the accuracy of forest and fallow forest classes could be increased substantially. Based on such a classification, landscape metrics in the form of land cover class ratios enabled the identification of crop-fallow rotation characteristics of the shifting cultivation land use practice. By classifying and combining these landscape metrics, shifting cultivation landscapes could be delineated using a single land cover dataset.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Apoptosis, a form of programmed cell death, is critical to homoeostasis, normal development, and physiology. Dysregulation of apoptosis can lead to the accumulation of unwanted cells, such as occurs in cancer, and the removal of needed cells or disorders of normal tissues, such as heart, neurodegenerative, and autoimmune diseases. Noninvasive detection of apoptosis may play an important role in the evaluation of disease states and response to therapeutic intervention for a variety of diseases. It is desirable to have an imaging method to accurately detect and monitor this process in patients. In this study, we developed annexin A5-conjugated polymeric micellar nanoparticles dual-labeled with a near-infrared fluorescence fluorophores (Cy7) and a radioisotope (111In), named as 111In-labeled annexin A5-CCPM. In vitro studies demonstrated that annexin A5-CCPM could strongly and specifically bind to apoptotic cells. In vivo studies showed that apoptotic tissues could be clearly visualized by both single photon emission computed tomography (SPECT) and fluorescence molecular tomography (FMT) after intravenous injection of 111In-labeled Annexin A5-CCPM in 6 different apoptosis models. In contrast, there was little signal in respective healthy tissues. All the biodistribution data confirmed imaging results. Moreover, histological analysis revealed that radioactivity count correlated with fluorescence signal from the nanoparticles, and both signals co-localized with the region of apoptosis. In sum, 111In-labeled annexin A5-CCPM allowed visualization of apoptosis by both nuclear and optical imaging techniques. The complementary information acquired with multiple imaging techniques should be advantageous in improving diagnostics and management of patients.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: The aim of the present study was to contributing to researching physiological effects of arts speech therapy by (i) investigating effects of inner and heard speech on cerebral hemodynamics and oxygenation, and (ii) analyzing if these changes were affected by alterations of the arterial carbon dioxide pressure (PaCO2). Methods: In 29 healthy adult volunteers we measured changes in cerebral absolute oxyhemoglobin ([O2Hb]), deoxyhemoglobin ([HHb]), total hemoglobin ([tHb]) concentrations and tissue oxygen saturation (StO2) (over the left and right anterior prefrontal cortex (PFC)) using functional near-infrared spectroscopy (fNIRS) as well as changes in end-tidal CO2 (PETCO2) using capnography. Each subject performed six different tasks: three types of task modalities, i.e. inner speech, heard speech from a person and heard speech from a record, and, two recitation texts, i.e. hexameter and alliteration on different days according to a randomized crossover design. Statistical analysis was applied to the differences between the baseline, two task and four recovery periods. The two brain hemispheres, i.e. left and right PFC, and six tasks were tested separately. Results: During the tasks we found in general a decrease in PETCO2 (significantly only for inner speech), StO2, [O2Hb], [tHb] as well as in an increase in [HHb]. There was a significant difference between hexameter and alliteration. Particularly, the changes in [tHb] at the left PFC during tasks and after them were statistically different. Furthermore we found significant relations between changes in [O2Hb], [HHb], [tHb] or StO2 and the participants’ age, the baseline PETCO2, or certain speech tasks. Conclusions: Changes in breathing (hyperventilation) during the tasks led to lower PaCO2 (hypocapnia) for inner speech. During heard speech no significant changes in PaCO2 occurred, but the decreases in StO2, [O2Hb], [tHb] suggest that changes in PaCO2 were also relevant here. Different verse types (hexameter, alliteration) led to different changes in [tHb]. Consequently, StO2, [O2Hb], [HHb] and [tHb] are affected by interplay of both PaCO2 reactivity and task dependent functional brain activity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Purpose: Artistic speech therapy is applied in anthroposophically extended medicine to treat several diseases. The aim is to understand the physiology by investigating the effect of inner and heard speech on brain hemodynamics and oxygenation and analyzing whether these changes were affected by changes in arterial carbon dioxide pressure. Methods: In 29 healthy adult volunteers changes in cerebral absolute oxyhemoglobin ([O2Hb]), deoxyhemoglobin ([HHb]), total hemoglobin ([tHb]) concentrations and tissue oxygen saturation (StO2) were measured by functional near-infrared spectroscopy (fNIRS). End-tidal CO2 (PETCO2) was assessed by capnography. Each subject performed six tasks: inner speech, heard speech from a person and heard speech from a record with each two different recitation texts: hexameter and alliteration according to a randomized crossover design. Results: Significant changes during tasks: A decrease in StO2, [O2Hb], [tHb] and PETCO2 (only for inner speech); an increase in [HHb]. There was a significant difference between hexameter and alliteration. Particularly, changes in [tHb] at the left prefrontal cortex during tasks and after them were statistically different. Furthermore we found significant relations between changes in [O2Hb], [HHb], [tHb] or StO2 and the participants’ age, the baseline PETCO2, or certain speech tasks. Conclusion: During the inner speech, hyperventilation led to a lower PETCO2 (hypocapnia). During heard speech no significant changes in PETCO2 occurred. But decreases in StO2, [O2Hb], [tHb] suggest hypocapnia also here. Hexameter and alliteration led to different changes in [tHb]. Consequently, our parameters are affected by an interplay of both PETCO2 response and task dependent functional brain activity.