998 resultados para N-gram prediction


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Repeat proteins have become increasingly important due to their capability to bind to almost any proteins and the potential as alternative therapy to monoclonal antibodies. In the past decade repeat proteins have been designed to mediate specific protein-protein interactions. The tetratricopeptide and ankyrin repeat proteins are two classes of helical repeat proteins that form different binding pockets to accommodate various partners. It is important to understand the factors that define folding and stability of repeat proteins in order to prioritize the most stable designed repeat proteins to further explore their potential binding affinities. Here we developed distance-dependant statistical potentials using two classes of alpha-helical repeat proteins, tetratricopeptide and ankyrin repeat proteins respectively, and evaluated their efficiency in predicting the stability of repeat proteins. We demonstrated that the repeat-specific statistical potentials based on these two classes of repeat proteins showed paramount accuracy compared with non-specific statistical potentials in: 1) discriminate correct vs. incorrect models 2) rank the stability of designed repeat proteins. In particular, the statistical scores correlate closely with the equilibrium unfolding free energies of repeat proteins and therefore would serve as a novel tool in quickly prioritizing the designed repeat proteins with high stability. StaRProtein web server was developed for predicting the stability of repeat proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work proposes a novel approach to compute transonic limit-cycle oscillations using high-fidelity analysis. Computational-Fluid-Dynamics based harmonic balance methods have proven to be efficient tools to predict periodic phenomena. This paper’s contribution is to present a new methodology to determine the unknown frequency of oscillations, enabling harmonic balance methods to accurately capture limit-cycle oscillations; this is achieved by defining a frequency-updating procedure based on a coupled computational-fluid-dynamics/computational-structural-dynamics harmonic balance formulation to find the limit-cycle oscillation condition. A pitch/plunge airfoil and delta wing aerodynamic and respective linear structural models are used to validate the new method against conventional time-domain simulations. Results show consistent agreement between the proposed and time-marching methods for both limit-cycle oscillation amplitude and frequency while producing at least a one-order-of-magnitude reduction in computational time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite significant advances in treatment strategies targeting the underlying defect in cystic fibrosis (CF), airway infection remains an important cause of lung disease. In this two-part series, we review recent evidence related to the complexity of CF airway infection, explore data suggesting the relevance of individual microbial species, and discuss current and future treatment options. In Part I, the evidence with respect to the spectrum of bacteria present in the CF airway, known as the lung microbiome is discussed. Subsequently, the current approach to treat methicillin-resistant Staphylococcus aureus, gram-negative bacteria, as well as multiple coinfections is reviewed. Newer molecular techniques have demonstrated that the airway microbiome consists of a large number of microbes, and the balance between microbes, rather than the mere presence of a single species, may be relevant for disease pathophysiology. A better understanding of this complex environment could help define optimal treatment regimens that target pathogens without affecting others. Although relevance of these organisms is unclear, the pathologic consequences of methicillin-resistant S. aureus infection in patients with CF have been recently determined. New strategies for eradication and treatment of both acute and chronic infections are discussed. Pseudomonas aeruginosa plays a prominent role in CF lung disease, butmany other nonfermenting gram-negative bacteria are also found in the CF airway. Many new inhaled antibiotics specifically targeting P. aeruginosa have become available with the hope that they will improve the quality of life for patients. Part I concludes with a discussion of how best to treat patients with multiple coinfections.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bdellovibrio bacteriovorus are small, vibroid, predatory bacteria that grow within the periplasmic space of a host Gram-negative bacterium. The intermediate-filament (IF)-like protein crescentin is a member of a broad class of IF-like, coiled-coil-repeat-proteins (CCRPs), discovered in Caulobacter crescentus, where it contributes to the vibroid cell shape. The B. bacteriovorus genome has a single ccrp gene encoding a protein with an unusually long, stutter-free, coiled-coil prediction; the inactivation of this did not alter the vibriod cell shape, but caused cell deformations, visualized as chiselled insets or dents, near the cell poles and a general 'creased' appearance, under the negative staining preparation used for electron microscopy, but not in unstained, frozen, hydrated cells. Bdellovibrio bacteriovorus expressing 'teal' fluorescent protein (mTFP), as a C-terminal tag on the wild-type Ccrp protein, did not deform under negative staining, suggesting that the function was not impaired. Localization of fluorescent Ccrp-mTFP showed some bias to the cell poles, independent of the cytoskeleton, as demonstrated by the addition of the MreB-specific inhibitor A22. We suggest that the Ccrp protein in B. bacteriovorus contributes as an underlying scaffold, similar to that described for the CCRP protein FilP in Streptomyces coelicolor, preventing cellular indentation, but not contributing to the vibroid shape of the B. bacteriovorus cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

N-gram analysis is an approach that investigates the structure of a program using bytes, characters or text strings. This research uses dynamic analysis to investigate malware detection using a classification approach based on N-gram analysis. The motivation for this research is to find a subset of Ngram features that makes a robust indicator of malware. The experiments within this paper represent programs as N-gram density histograms, gained through dynamic analysis. A Support Vector Machine (SVM) is used as the program classifier to determine the ability of N-grams to correctly determine the presence of malicious software. The preliminary findings show that an N-gram size N=3 and N=4 present the best avenues for further analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The applicability of ultra-short-term wind power prediction (USTWPP) models is reviewed. The USTWPP method proposed extracts featrues from historical data of wind power time series (WPTS), and classifies every short WPTS into one of several different subsets well defined by stationary patterns. All the WPTS that cannot match any one of the stationary patterns are sorted into the subset of nonstationary pattern. Every above WPTS subset needs a USTWPP model specially optimized for it offline. For on-line application, the pattern of the last short WPTS is recognized, then the corresponding prediction model is called for USTWPP. The validity of the proposed method is verified by simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It remains challenging to accurately predict whether an individual arteriovenous fistula (AVF) will mature and be useable for haemodialysis vascular access. Current best practice involves the use of routine clinical assessment and ultrasonography complemented by selective venography and magnetic resonance imaging. The purpose of this literature review is to describe current practices in relation to pre-operative assessment prior to AVF formation and highlight potential areas for future research to improve the clinical prediction of AVF outcomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Low-velocity impact damage can drastically reduce the residual mechanical properties of the composite structure even when there is barely visible impact damage. The ability to computationally predict the extent of damage and compression after impact (CAI) strength of a composite structure can potentially lead to the exploration of a larger design space without incurring significant development time and cost penalties. A three-dimensional damage model, to predict both low-velocity impact damage and compression after impact CAI strength of composite laminates, has been developed and implemented as a user material subroutine in the commercial finite element package, ABAQUS/Explicit. The virtual tests were executed in two steps, one to capture the impact damage and the other to predict the CAI strength. The observed intra-laminar damage features, delamination damage area as well as residual strength are discussed. It is shown that the predicted results for impact damage and CAI strength correlated well with experimental testing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lap joints are widely used in the manufacture of stiffened panels and influence local panel sub-component stability, defining buckling unit dimensions and boundary conditions. Using the Finite Element method it is possible to model joints in great detail and predict panel buckling behaviour with accuracy. However, when modelling large panel structures such detailed analysis becomes computationally expensive. Moreover, the impact of local behaviour on global panel performance may reduce as the scale of the modelled structure increases. Thus this study presents coupled computational and experimental analysis, aimed at developing relationships between modelling fidelity and the size of the modelled structure, when the global static load to cause initial buckling is the required analysis output. Small, medium and large specimens representing welded lap-joined fuselage panel structure are examined. Two element types, shell and solid-shell, are employed to model each specimen, highlighting the impact of idealisation on the prediction of welded stiffened panel initial skin buckling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Slow release drugs must be manufactured to meet target specifications with respect to dissolution curve profiles. In this paper we consider the problem of identifying the drivers of dissolution curve variability of a drug from historical manufacturing data. Several data sources are considered: raw material parameters, coating data, loss on drying and pellet size statistics. The methodology employed is to develop predictive models using LASSO, a powerful machine learning algorithm for regression with high-dimensional datasets. LASSO provides sparse solutions facilitating the identification of the most important causes of variability in the drug fabrication process. The proposed methodology is illustrated using manufacturing data for a slow release drug.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Virtual metrology (VM) aims to predict metrology values using sensor data from production equipment and physical metrology values of preceding samples. VM is a promising technology for the semiconductor manufacturing industry as it can reduce the frequency of in-line metrology operations and provide supportive information for other operations such as fault detection, predictive maintenance and run-to-run control. Methods with minimal user intervention are required to perform VM in a real-time industrial process. In this paper we propose extreme learning machines (ELM) as a competitive alternative to popular methods like lasso and ridge regression for developing VM models. In addition, we propose a new way to choose the hidden layer weights of ELMs that leads to an improvement in its prediction performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Being a new generation of green solvents and high-tech reaction media of the future, ionic liquids have increasingly attracted much attention. Of particular interest in this context are room temperature ionic liquids (in short as ILs in this paper). Due to the relatively high viscosity, ILs is expected to be used in the form of solvent diluted mixture with reduced viscosity in industrial application, where predicting the viscosity of IL mixture has been an important research issue. Different IL mixture and many modelling approaches have been investigated. The objective of this study is to provide an alternative model approach using soft computing technique, i.e., artificial neural network (ANN) model, to predict the compositional viscosity of binary mixtures of ILs [C n-mim][NTf 2] with n=4, 6, 8, 10 in methanol and ethanol over the entire range of molar fraction at a broad range of temperatures from T=293.0-328.0K. The results show that the proposed ANN model provides alternative way to predict compositional viscosity successfully with highly improved accuracy and also show its potential to be extensively utilized to predict compositional viscosity taking account of IL alkyl chain length, as well as temperature and compositions simultaneously, i.e., more complex intermolecular interactions between components in which it would be hard or impossible to establish the analytical model. This illustrates the potential application of ANN in the case that the physical and thermodynamic properties are highly non-linear or too complex. © 2012 Copyright the authors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single-Zone modelling is used to assess three 1D impeller loss model collections. An automotive turbocharger centrifugal compressor is used for evaluation. The individual 1D losses are presented relative to each other at three tip speeds to provide a visual description of each author’s perception of the relative importance of each loss. The losses are compared with their resulting prediction of pressure ratio and efficiency, which is further compared with test data; upon comparison, a combination of the 1D loss collections is identified as providing the best performance prediction. 3D CFD simulations have also been carried out for the same geometry using a single passage model. A method of extracting 1D losses from CFD is described and utilised to draw further comparisons with the 1D losses. A 1D scroll volute model has been added to the single passage CFD results; good agreement with the test data is achieved. Short-comings in the existing 1D loss models are identified as a result of the comparisons with 3D CFD losses. Further comparisons are drawn between the predicted 1D data, 3D CFD simulation results, and the test data using a nondimensional method to highlight where the current errors exist in the 1D prediction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract. Single-zone modelling is used to assess different collections of impeller 1D loss models. Three collections of loss models have been identified in literature, and the background to each of these collections is discussed. Each collection is evaluated using three modern automotive turbocharger style centrifugal compressors; comparisons of performance for each of the collections are made. An empirical data set taken from standard hot gas stand tests for each turbocharger is used as a baseline for comparison. Compressor range is predicted in this study; impeller diffusion ratio is shown to be a useful method of predicting compressor surge in 1D, and choke is predicted using basic compressible flow theory. The compressor designer can use this as a guide to identify the most compatible collection of losses for turbocharger compressor design applications. The analysis indicates the most appropriate collection for the design of automotive turbocharger centrifugal compressors.