998 resultados para Multi-packet reception
Resumo:
Biodiversity-ecosystem functioning theory would predict that increasing natural enemy richness should enhance prey consumption rate due to functional complementarity of enemy species. However, several studies show that ecological interactions among natural enemies may result in complex effects of enemy diversity on prey consumption. Therefore, the challenge in understanding natural enemy diversity effects is to predict consumption rates of multiple enemies taking into account effects arising from patterns of prey use together with species interactions. Here, we show how complementary and redundant prey use patterns result in additive and saturating effects, respectively, and how ecological interactions such as phenotypic niche shifts, synergy and intraguild predation enlarge the range of outcomes to include null, synergistic and antagonistic effects. This study provides a simple theoretical framework that can be applied to experimental studies to infer the biological mechanisms underlying natural enemy diversity effects on prey.
Resumo:
If the fundamental precepts of Farming Systems Research were to be taken literally then it would imply that for each farm 'unique' solutions should be sought. This is an unrealistic expectation, but it has led to the idea of a recommendation domain, implying creating a taxonomy of farms, in order to increase the general applicability of recommendations. Mathematical programming models are an established means of generating recommended solutions, but for such models to be effective they have to be constructed for 'truly' typical or representative situations. The multi-variate statistical techniques provide a means of creating the required typologies, particularly when an exhaustive database is available. This paper illustrates the application of this methodology in two different studies that shared the common purpose of identifying types of farming systems in their respective study areas. The issues related with the use of factor and cluster analyses for farm typification prior to building representative mathematical programming models for Chile and Pakistan are highlighted. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Milk supply from Mexican dairy farms does not meet demand and small-scale farms can contribute toward closing the gap. Two multi-criteria programming techniques, goal programming and compromise programming, were used in a study of small-scale dairy farms in central Mexico. To build the goal and compromise programming models, 4 ordinary linear programming models were also developed, which had objective functions to maximize metabolizable energy for milk production, to maximize margin of income over feed costs, to maximize metabolizable protein for milk production, and to minimize purchased feedstuffs. Neither multicriteria approach was significantly better than the other; however, by applying both models it was possible to perform a more comprehensive analysis of these small-scale dairy systems. The multi-criteria programming models affirm findings from previous work and suggest that a forage strategy based on alfalfa, rye-grass, and corn silage would meet nutrient requirements of the herd. Both models suggested that there is an economic advantage in rescheduling the calving season to the second and third calendar quarters to better synchronize higher demand for nutrients with the period of high forage availability.
Resumo:
The control of fishing mortality via fishing effort remains fundamental to most fisheries management strategies even at the local community or co-management level. Decisions to support such strategies require knowledge of the underlying response of the catch to changes in effort. Even under adaptive management strategies, imprecise knowledge of the response is likely to help accelerate the adaptive learning process. Data and institutional capacity requirements to employ multi-species biomass dynamics and age-structured models invariably render their use impractical particularly in less developed regions of the world. Surplus production models fitted to catch and effort data aggregated across all species offer viable alternatives. The current paper seeks models of this type that best describe the multi-species catch–effort responses in floodplain-rivers, lakes and reservoirs and reef-based fisheries based upon among fishery comparisons, building on earlier work. Three alternative surplus production models were fitted to estimates of catch per unit area (CPUA) and fisher density for 258 fisheries in Africa, Asia and South America. In all cases examined, the best or equal best fitting model was the Fox type, explaining up to 90% of the variation in CPUA. For lake and reservoir fisheries in Africa and Asia, the Schaefer and an asymptotic model fitted equally well. The Fox model estimates of fisher density (fishers km−2) at maximum yield (iMY) for floodplain-rivers, African lakes and reservoirs and reef-based fisheries are 13.7 (95% CI [11.8, 16.4]); 27.8 (95% CI [17.5, 66.7]) and 643 (95% CI [459,1075]), respectively and compare well with earlier estimates. Corresponding estimates of maximum yield are also given. The significantly higher value of iMY for reef-based fisheries compared to estimates for rivers and lakes reflects the use of a different measure of fisher density based upon human population size estimates. The models predict that maximum yield is achieved at a higher fishing intensity in Asian lakes compared to those in Africa. This may reflect the common practice in Asia of stocking lakes to augment natural recruitment. Because of the equilibrium assumptions underlying the models, all the estimates of maximum yield and corresponding levels of effort should be treated with caution.
Resumo:
Objectives: To assess the potential source of variation that surgeon may add to patient outcome in a clinical trial of surgical procedures. Methods: Two large (n = 1380) parallel multicentre randomized surgical trials were undertaken to compare laparoscopically assisted hysterectomy with conventional methods of abdominal and vaginal hysterectomy; involving 43 surgeons. The primary end point of the trial was the occurrence of at least one major complication. Patients were nested within surgeons giving the data set a hierarchical structure. A total of 10% of patients had at least one major complication, that is, a sparse binary outcome variable. A linear mixed logistic regression model (with logit link function) was used to model the probability of a major complication, with surgeon fitted as a random effect. Models were fitted using the method of maximum likelihood in SAS((R)). Results: There were many convergence problems. These were resolved using a variety of approaches including; treating all effects as fixed for the initial model building; modelling the variance of a parameter on a logarithmic scale and centring of continuous covariates. The initial model building process indicated no significant 'type of operation' across surgeon interaction effect in either trial, the 'type of operation' term was highly significant in the abdominal trial, and the 'surgeon' term was not significant in either trial. Conclusions: The analysis did not find a surgeon effect but it is difficult to conclude that there was not a difference between surgeons. The statistical test may have lacked sufficient power, the variance estimates were small with large standard errors, indicating that the precision of the variance estimates may be questionable.
Resumo:
The main objectives of this paper are to: firstly, identify key issues related to sustainable intelligent buildings (environmental, social, economic and technological factors); develop a conceptual model for the selection of the appropriate KPIs; secondly, test critically stakeholder's perceptions and values of selected KPIs intelligent buildings; and thirdly develop a new model for measuring the level of sustainability for sustainable intelligent buildings. This paper uses a consensus-based model (Sustainable Built Environment Tool- SuBETool), which is analysed using the analytical hierarchical process (AHP) for multi-criteria decision-making. The use of the multi-attribute model for priority setting in the sustainability assessment of intelligent buildings is introduced. The paper commences by reviewing the literature on sustainable intelligent buildings research and presents a pilot-study investigating the problems of complexity and subjectivity. This study is based upon a survey perceptions held by selected stakeholders and the value they attribute to selected KPIs. It is argued that the benefit of the new proposed model (SuBETool) is a ‘tool’ for ‘comparative’ rather than an absolute measurement. It has the potential to provide useful lessons from current sustainability assessment methods for strategic future of sustainable intelligent buildings in order to improve a building's performance and to deliver objective outcomes. Findings of this survey enrich the field of intelligent buildings in two ways. Firstly, it gives a detailed insight into the selection of sustainable building indicators, as well as their degree of importance. Secondly, it tesst critically stakeholder's perceptions and values of selected KPIs intelligent buildings. It is concluded that the priority levels for selected criteria is largely dependent on the integrated design team, which includes the client, architects, engineers and facilities managers.
Resumo:
Building refurbishment is key to reducing the carbon footprint and improving comfort in the built environment. However, quantifying the real benefit of a facade change, which can bring advantages to owners (value), occupants (comfort) and the society (sustainability), is not a simple task. At a building physics level, the changes in kWh per m2 of heating / cooling load can be readily quantified. However, there are many subtle layers of operation and mainte-nance below these headline figures which determine how sustainable a building is in reality, such as for example quality of life factors. This paper considers the range of approached taken by a fa/e refurbishment consortium to assess refurbishment solutions for multi-storey, multi-occupancy buildings and how to critically evaluate them. Each of the applued tools spans one or more of the three building parameters of people, product and process. 'De-cision making' analytical network process and parametric building analysis tools are described and their potential impact on the building refurbishment process evaluated.
Resumo:
The purpose of this paper is to present two multi-criteria decision-making models, including an Analytic Hierarchy Process (AHP) model and an Analytic Network Process (ANP) model for the assessment of deconstruction plans and to make a comparison between the two models with an experimental case study. Deconstruction planning is under pressure to reduce operation costs, adverse environmental impacts and duration, in the meanwhile to improve productivity and safety in accordance with structure characteristics, site conditions and past experiences. To achieve these targets in deconstruction projects, there is an impending need to develop a formal procedure for contractors to select a most appropriate deconstruction plan. Because numbers of factors influence the selection of deconstruction techniques, engineers definitely need effective tools to conduct the selection process. In this regard, multi-criteria decision-making methods such as AHP have been adopted to effectively support deconstruction technique selection in previous researches. in which it has been proved that AHP method can help decision-makers to make informed decisions on deconstruction technique selection based on a sound technical framework. In this paper, the authors present the application and comparison of two decision-making models including the AHP model and the ANP model for deconstruction plan assessment. The paper concludes that both AHP and ANP are viable and capable tools for deconstruction plan assessment under the same set of evaluation criteria. However, although the ANP can measure relationship among selection criteria and their sub-criteria, which is normally ignored in the AHP, the authors also indicate that whether the ANP model can provide a more accurate result should be examined in further research.
Resumo:
A means of assessing, monitoring and controlling aggregate emissions from multi-instrument Emissions Trading Schemes is proposed. The approach allows contributions from different instruments with different forms of emissions targets to be integrated. Where Emissions Trading Schemes are helping meet specific national targets, the approach allows the entry requirements of new participants to be calculated and set at a level that will achieve these targets. The approach is multi-levelled, and may be extended downwards to support pooling of participants within instruments, or upwards to embed Emissions Trading Schemes within a wider suite of policies and measures with hard and soft targets. Aggregate emissions from each instrument are treated stochastically. Emissions from the scheme as a whole are then the joint probability distribution formed by integrating the emissions from its instruments. Because a Bayesian approach is adopted, qualitative and semi-qualitative data from expert opinion can be used where quantitative data is not currently available, or is incomplete. This approach helps government retain sufficient control over emissions trading scheme targets to allow them to meet their emissions reduction obligations, while minimising the need for retrospectively adjusting existing participants’ conditions of entry. This maintains participant confidence, while providing the necessary policy levers for good governance.
Resumo:
The acute hippocampal brain slice preparation is an important in vitro screening tool for potential anticonvulsants. Application of 4-aminopyridine (4-AP) or removal of external Mg2+ ions induces epileptiform bursting in slices which is analogous to electrical brain activity seen in status epilepticus states. We have developed these epileptiform models for use with multi-electrode arrays (MEAs), allowing recording across the hippocampal slice surface from 59 points. We present validation of this novel approach and analyses using two anticonvulsants, felbamate and phenobarbital, the effects of which have already been assessed in these models using conventional extracellular recordings. In addition to assessing drug effects on commonly described parameters (duration, amplitude and frequency), we describe novel methods using the MEA to assess burst propagation speeds and the underlying frequencies that contribute to the epileptiform activity seen. Contour plots are also used as a method of illustrating burst activity. Finally, we describe hitherto unreported properties of epileptiform, bursting induced by 100 mu M 4-AP or removal of external Mg2+ ions. Specifically, we observed decreases over time in burst amplitude and increase over time in burst frequency in the absence of additional pharmacological interventions. These MEA methods enhance the depth, quality and range of data that can be derived from the hippocampal slice preparation compared to conventional extracellular recordings. it may also uncover additional modes of action that contribute to anti-epileptiform drug effects. (C) 2009 Elsevier B.V. All rights reserved.