903 resultados para Mouse Keratinocytes


Relevância:

20.00% 20.00%

Publicador:

Resumo:

MacroH2A is a core histone variant that plays an important role in the X-inactivation process during differentiation of embryonic stem cells. It has been shown that macroH2A changes in localization during the cell cycle of somatic cells. This study aims to determine how macroH2A changes during the cell cycle of embryonic stem cells. Male and female mouse embryonic stem cells were transfected with a GFP::macroH2A construct and the relationship between macroH2A and the cell cycle was determined using FACS. This study shows that macroH2A is altered during the cell cycle of embryonic stem cells as it is in somatic cells and that in randomly cycling cells, there is a correlation between macroH2A expression and the phases of the cell cycle. High GFP expressing cells are mostly in the G2/M phase and low GFP expressing cells are mostly in the G1 phase. This correlation indicated that macroH2A is replicated with cellular DNA during the S phase resulting in higher expression in the G2/M phase. Future research, such as RT-PCR and differentiation experiments, is needed to further study this relationship and determine whether this change is at the protein or RNA level and how it changes during differentiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Detrusor underactivity (DU) increases susceptibility to urinary retention and accordingly further complicates the management of urinary incontinence. Bladder muscle stretch, a lack of estrogen, and aging are 3 notable DU risk factors. The aim of this research is to better characterize the changes in cellular composition of the bladder that result from these 3 risk factors to gain a better understanding of DU pathogenesis and pathobiology. This research focuses on the effects of a lack of estrogen while also providing an outline for determining the effects of bladder muscle stretch and aging on the cellular composition of the bladder.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A combination of psoralens and ultraviolet-A radiation referred to as PUVA, is widely used in the treatment of psoriasis. PUVA therapy is highly effective in killing hyperproliferative cells, but its mechanism of action has not been fully elucidated. Psoralen binds to DNA, and upon photoactivation by UVA, it forms monofunctional adducts and interstrand cross-links. PUVA treatment has been shown to be mutagenic and to produce tumors in animals. In addition, epidemiological studies have reported a 10 to 15 percent increased risk of developing squamous cell carcinoma in individuals treated chronically with PUVA. However, it remains a treatment for skin disorders such as psoriasis because its benefits outweigh its risks. The widespread use of PUVA therapy and its associated cancer risk requires us to understand the molecular mechanisms by which PUVA induces cell death. Immortalized JB6 mouse epidermal cells, p53−/− mice, and Fas Ligand−/− (gld) mice were used to investigate the molecular mechanism by which PUVA kills cells. Treatment of JB6 cells with 10 μg/ml 8-methoxypsoralen followed by irradiation with 20 kJ/m2 UVA resulted in cell death. The cells exhibited morphological and biochemical characteristics of apoptosis such as chromatin condensation, DNA ladder formation, and TUNEL-positivity. PUVA treatment stabilized and phosphorylated p53 leading to its activation, as measured by nuclear localization and induction of p21Waf/Cip1, a transcriptional target of p53. Subsequent in vivo studies revealed that there was statistically significantly less apoptosis in p53 −/− mice than in p53+/+ mice at 72 hours after PUVA. In addition, immunohistochemical analysis revealed more Fas and FasL expression in p53+/+ mice than in p53−/− mice, suggesting that p53 is required to transcriptionally activate Fas, which in turn causes the cells to undergo apoptosis. Studies with gld mice confirmed a role for Fas/FasL interactions in PUVA-induced apoptosis. There was statistically significantly less apoptosis in gld mice compared with wild-type mice 24, 48, and 72 hours after PUVA. These results demonstrate that PUVA-induced apoptosis in mouse epidermal cells requires p53 and Fas/FasL interactions. These findings may be important for designing effective treatments for diseases such as psoriasis without increasing the patient's risk for skin cancer. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During early mouse neural development, bone morphogenetic protein (BMP) signaling patterns the dorsal neural tube and defines distinct neural progenitor cell domains along the dorsoventral axis. Unlike the ventral signaling molecule Sonic hedgehog, which has long-range activity by establishing a concentration gradient in the ventral neural tube, these dorsally expressed BMPs appear to have a limited domain of action. This raises questions as to how BMP activity is restricted locally and how restricted BMP signaling directs dorsal neural patterning and differentiation. I hypothesize that BMPs are restricted in the dorsal neural tube for correct dorsoventral patterning. ^ Previous studies have shown that the positively charged basic amino acids located at the N-terminus of several BMPs are essential for heparin binding and diffusion. This provides a novel tool to address these questions. Here I adapted a UAS/GAL4 bigenic mouse system to control the ectopic expression of BMP4 and a mutant form of BMP4 that lacks a subset of the N-terminal basic amino acids. The target genes, UAS-Bmp4 and UAS-mBmp4 , were introduced into the Hprt locus by gene targeting in mouse embryonic stem cells. The expression of the GAL4 transactivator was driven by a roof plate specific Wnt1 promoter. ^ The bigenic mouse embryos exhibit phenotype variations, ranging from mid/hindbrain defects, hemorrhage, and eye abnormalities to vasculture formation. Embryonic death starts around E11.5 because of severe hemorrhage. The different expression levels of the activated transgene may account for the phenotype variation. Further marker analysis reveals that mutant BMP4 induces ectopic expression of the dorsal markers MSX1/2 and PAX7 in the ventral neural tube. In addition, the expression of the ventral neural marker NKX2.2 is affected by the expanded BMP4 activity, indicating that ectopic BMP signaling can antagonize ventral signaling. Comparison of the phenotypes of the Wnt1/ Bmp4 and Wnt1/mBmp4 bigenic embryos that express transgenes at the same level, respectively, shows that mutant BMP4 causes the expansion of dorsal neural fates ventrally while wild type BMP4 does not, suggesting that mutant BMP4 acts farther than wild type BMP4. Together, these data suggest that the N-terminus basic amino acid core controls BMP4 long-range activity in neural development, and that BMP signaling patterns the dorsal neural tube through a secondary signaling pathway that involves homeodomain transcription factors MSX1/2 and PAX7. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adenosine has been implicated to play a role in inflammatory processes associated with asthma. Most notable is adenosine's ability to potentiate mediator release from mast cells. Mast cells are bone marrow derived inflammatory cells that can release mediators that have both immediate and chronic effects on airway constriction and inflammation. Most physiological roles of adenosine are mediated through adenosine receptors. Four subtypes of adenosine receptors have been identified, A1, A2A, A2B and A 3. The mechanisms by which adenosine can influence the release of mediators from lung tissue mast cells is not understood due to lack of in vivo models. Mice deficient in the enzyme adenosine deaminase (ADA) have been generated. ADA controls the levels of adenosine in tissues and cells, and consequently, adenosine accumulates in the lungs of ADA-deficient mice. ADA-deficient mice develop features seen in asthmatics, including lung eosinophilia and mucus hypersecretion. In addition, lung tissue mast cell degranulation was associated with elevated adenosine in ADA-deficient lungs and can be prevented by ADA enzyme therapy. We established primary murine lung mast cell cultures, and used real time RT-PCR and immunofluorescence to demonstrate that A 2A, A2B and A3 receptors are expressed on murine lung mast cells. Studies using selective adenosine receptor agonists and antagonists and A3 receptor deficient (A3−/−) mast cells suggested that activation of A3 receptors could induce mast cell mediator release in vitro. Furthermore, this mediator release was associated with increases in intracellular Ca++ that appeared to be mediated through a Gi and PI3K pathway. In addition, nebulized A3 receptor agonist directly induced lung mast cell degranulation in wild type mice while having no effect in A3−/− mice. These results demonstrate that the A3 receptor plays an important role in adenosine mediated murine lung mast cell degranulation. Therefore, the A3 adenosine receptor and its signaling pathways may represent novel therapeutic targets for the treatment and prevention of asthma. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carboxypeptidase N (CPN) is a plasma zinc metalloprotease, which consists of two enzymatically active small subunits and two large subunits that protect the protein from degradation. CPN cleaves carboxy-terminal arginines and lysines from peptides found in the bloodstream such as complement anaphylatoxins, kinins, and creatine kinase MM. In this study, the mouse CPN small subunit (CPN1) coding region, gene structure, and chromosomal location were characterized and the expression of CPN1 was investigated in mouse embryos at different stages of development. The CPN1 gene, which was approximately 29 kb in length, contained nine exons and localized to mouse chromosome 19D2. The fifth and sixth exons of CPN1 encoded the amino acids necessary for substrate binding and catalytic activity. CPN1 RNA was expressed predominately in adult liver and contained a 1371 bp open reading frame encoding 457 amino acids. In the mouse embryo, CPN1 RNA was observed at 8.5 days post coitus (dpc), while its protein was detected at 10.5 dpc. In situ hybridization of the fetal liver detected CPN1 RNA in erythroid progenitor cells at 10.5, 13.5, and 16.5 dpc and in hepatocytes at 16.5 dpc. This was compared to the expression of the complement component C3, the parent molecule of complement anaphylatoxin C3a. Consistently throughout the experiments, CPN1 message and protein preceded the expression of C3. To obtain a better understanding of the biological significance of CPN1 in vivo, studies were initiated to produce a genetically engineered mouse in which the CPN1 gene was ablated. To facilitate this project a targeting vector was constructed by removing the functionally important fifth and sixth exons of the CPN1 gene. Collectively, these studies have: (1) provided important detailed information regarding the structure and organization of the murine CPN1 gene, (2) yielded insights into the developmental expression of mouse CPN1 in relationship to C3 expression, and (3) set the stage for the generation of a CPN1 “knock-out” mouse, which can be used to determine the biological significance of CPN1 in both normal and diseased conditions. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Retinoid therapy has been successful for the treatment of skin squamous cell carcinoma (SCC). A suppression of the predominant retinoid X receptor expressed in skin, retinoid X receptor α (RXRα), has been reported in skin SCC. These observations have led to the hypothesis that retinoid receptor loss contributes to the tumorigenic phenotype of epithelial cancers. To test this hypothesis, the RXRα gene was mapped in order to generate a targeting construct. Additionally the transcriptional regulation of the human RXRα a gene in keratinocytes was characterized after identifying the transcription initiation sites, the promoter, and enhancer regions of this gene. The structure is highly conserved between human and mouse. A nontumorigenic human skin-derived cell line called near diploid immortalized keratinocytes (NIKS) has the advantage of growing as organotypic raft cultures, under physiological conditions closely resembling in-vivo squamous stratification. We have exploited the raft culture technique to develop an in-vitro model for skin SCC progression that includes the NIKS cells, HaCaT cells, a premalignant cell line, and SRB 12-p9 cells, a tumorigenic SCC skin cell line. The differentiation, proliferation and nuclear receptor ligand response characteristics of this system were studied and significant and novel results were obtained. RXRs are obligate heterodimerization partners with many of the nuclear hormone receptors, including retinoic acid receptors (RARs), vitamin D3 receptors (VDR), thyroid hormone receptors (T3 R) and peroxisome proliferator activate receptors (PPARs), which are all known to be active in skin. Treatment of the three cell lines in raft culture with the RXR specific ligand BMS649, BMS961 (RARγ-specific), vitamin D3 (VDR ligand), thryoid hormone (T3R ligand) and clofibrate (PPARa ligand), and the combination of BMS649 with each of the 4 receptor partner ligands, resulted in distinct effects on differentiation, proliferation and apoptosis. The effects of activation of RXRs in each of the four-receptor pathways; in the context of skin SCC progression, with an emphasis on the VDR/RXR pathway, are discussed. These studies will lead to a better understanding of RXRα action in human skin and will help determine its role in SCC tumorigenesis, as well as its potential as a target for the prevention, treatment, and control of skin cancer. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Though E2F1 is deregulated in most human cancers by mutations of the p16-cyclin D-Rb pathway, it also exhibits tumor suppressive activity. A transgenic mouse model overexpressing E2F1 under the control of the bovine keratin 5 (K5) promoter exhibits epidermal hyperplasia and spontaneously develops tumors in the skin and other epithelial tissues after one year of age. In a p53-deficient background, aberrant apoptosis in K5 E2F1 transgenic epidermis is reduced and tumorigenesis is accelerated. In sharp contrast, K5 E2F1 transgenic mice are resistant to papilloma formation in the DMBA/TPA two-stage carcinogenesis protocol. K5 E2F4 and K5 DP1 transgenic mice were also characterized and both display epidermal hyperplasia but do not develop spontaneous tumors even in cooperation with p53 deficiency. These transgenic mice do not have increased levels of apoptosis in their skin and are more susceptible to papilloma formation in the two-stage carcinogenesis model. These studies show that deregulated proliferation does not necessarily lead to tumor formation and that the ability to suppress skin carcinogenesis is unique to E2F1. E2F1 can also suppress skin carcinogenesis when okadaic acid is used as the tumor promoter and when a pre-initiated mouse model is used, demonstrating that E2F1's tumor suppressive activity is not specific for TPA and occurs at the promotion stage. E2F1 was thought to induce p53-dependent apoptosis through upregulation of p19ARF tumor suppressor, which inhibits mdm2-mediated p53 degradation. Consistent with in vitro studies, the overexpression of E2F1 in mouse skin results in the transcriptional activation of the p19ARF and the accumulation of p53. Inactivation of either p19ARF or p53 restores the sensitivity of K5 E2F1 transgenic mice to DMBA/TPA carcinogenesis, demonstrating that an intact p19ARF-p53 pathway is necessary for E2F1 to suppress carcinogenesis. Surprisingly, while p53 is required for E2F1 to induce apoptosis in mouse skin, p19ARF is not, and inactivation of p19ARF actually enhances E2F1-induced apoptosis and proliferation in transgenic epidermis. This indicates that ARF is important for E2F1-induced tumor suppression but not apoptosis. Senescence is another potential mechanism of tumor suppression that involves p53 and p19ARF. K5 E2F1 transgenic mice initiated with DMBA and treated with TPA show an increased number of senescence cells in their epidermis. These experiments demonstrate that E2F1's unique tumor suppressive activity in two-stage skin carcinogenesis can be genetically separated from E2F1-induced apoptosis and suggest that senescence utilizing the p19ARF-p53 pathway plays a role in tumor suppression by E2F1. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The importance of IGF-1/IGF-1R signaling is evident in human cancers including breast, colon, prostate, and lung which have been shown to overexpress IGF-1. Also, serum levels of IGF-1 have been identified as a risk factor for these cancers. IGF-1 has been primarily shown to mediate its mitogenic effects through signaling pathways such as MAPK and PI3K/Akt. In this regard, BK5.IGF-1 transgenic mice were generated and these mice displayed hyperplasia and hyperkeratosis in the epidermis. In addition, these mice were also found to have elevated MAPK, PI3K, and Akt activities. Furthermore, overexpression of IGF-1 in epidermis can act as a tumor promoter. BK5.IGF-1 transgenic mice developed papillomas after initiation with DMBA without further treatment with a tumor promoter such as TPA. Previous data has also shown that inhibition of the PI3K/Akt signaling pathway by the inhibitor LY294002 was able to reduce the number of tumors formed by IGF-1 mediated tumor promotion. The current studies presented demonstrate that Akt may be the critical effector molecule in IGF-1/IGF-1R mediated tumor promotion. We have found that inhibition of PI3K/Akt by LY294002 inhibits cell cycle components, particularly those associated with G1 to S phase transition including Cyclin D1, Cyclin E, E2F1, and E2F4, that are elevated in epidermis of BK5.IGF-1 transgenic mice. We have also demonstrated that Akt activation may be a central theme in early tumor promotion. In this regard, treatment with diverse tumor promoters such as TPA, okadaic acid, chrysarobin, and UVB was shown to activate epidermal Akt and its downstream signaling pathways after a single treatment. Furthermore, overexpression of Akt targeted to the basal cells of the epidermis led to hyperplasia and increased labeling index as determined by BrdU staining. These mice also had constitutively elevated levels of cell cycle components, particularly Cyclin D1, Cyclin E, E2F1, E2F4, and Mdm-2. These mice developed skin tumors following initiation with DMBA and were hypersensitive to the tumor promoting effects of TPA. Collectively, these studies provide evidence that Akt activation plays an important role in the process of mouse skin tumor promotion. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adenosine has been implicated in chronic lung diseases such as asthma and COPD. Most physiological actions of adenosine are mediated through G-protein coupled adenosine receptors. Four subtypes of adenosine receptors have been identified, A1, A2A, A2B, and A 3. However, the specific roles of the various adenosine receptors in processes central to asthma and COPD are not well understood in part due to the lack of adequate animal models that examine the effect of adenosine on the development of lung disease. In this study we have investigated the expression and function of the A3 adenosine receptor in pulmonary eosinophilia and mucus production/secretion in adenosine deaminase (ADA)-deficient mice in which adenosine levels are elevated. ADA-deficient mice develop features of asthma and COPD, including lung eosinophilia and mucus hyperplasia in association with elevated lung adenosine levels. The A3 receptor was found to be expressed in eosinophils and mucus producing cells in the airways of ADA-deficient. Disruption of A3 receptor signaling in ADA-deficient mice by genetic removal of the receptor or treatment with MRS 1523, a selective A3 adenosine receptor antagonist, prevented airway eosinophilia and mucus production. Although eosinophils were decreased in the airways of ADA-deficient mice with disrupted A3 receptor signaling, elevations in circulating and lung interstitial eosinophils persisted, suggesting signaling through the A3 receptor is needed for the migration of eosinophils into the airways. Further examination of the role of the A3 receptor in mucus biology demonstrated that the A3 receptor is neither required nor is overexpression of the receptor in clara cells sufficient for mucus production in naive mice. Transgenic overexpression of the A3 receptor did elucidate a role for the A3 receptor in the secretion of mucus into the airways of ovalbumin challenged mice. These findings identify an important role for the A3 adenosine receptor in regulating lung eosinophilia and mucus secretion in inflammatory lung diseases. Therefore, the A3 adenosine receptor may represent a novel therapeutic target for the treatment and prevention of asthma. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lmx1b encodes a LIM-homeodomain transcription factor required for dorso-ventral (D-V) patterning in the mesenchyme of the vertebrate limb. In the absence of Lmx1b function, limbs exhibit a bi-ventral pattern indicating that Lmx1b is required for cells to adopt a dorsal cell fate. However, how Lmx1b specifies dorsal cell fates in the mesenchyme of the distal limb is unknown. Lmx1b is initially expressed throughout the dorsal and ventral limb bud mesenchyme, then becomes dorsally restricted around E10.5. At this stage, there is a sharp boundary between Lmx1b expressing and Lmx1b non-expressing cells. How the dorso-ventral Lmx1b expression boundary is formed and maintained is currently unknown. One mechanism that may contribute to establishing and/or maintaining the Lmx1b expression boundary is if the dorsal mesenchyme is a lineage-based compartment, where different groups of non-mingling cells are separated. Compartment formation has been proposed to rely on compartment-specific selector gene activity which functions to restrict cells to a compartment and specifies the identity of cells within that compartment. Based on the evidence that the dorsal limb identity relies on the expression of Lmx1b in the dorsal half of the limb mesenchyme, we hypothesized that Lmx1b might function as a dorsal limb bud mesenchyme selector gene to set up a dorsal compartment. To test this hypothesis, we developed an inducible CreERT2/ loxP based fate mapping approach that permanently marks Lmx1b wild-type and mutant cells and examined the distribution of their descendents in the developing limb. Our data is the first to show that dorso-ventral lineage compartments exist in the limb bud mesenchyme. Furthermore, Lmx1b is required for maintenance of the dorso-ventral compartment lineage boundary. The behavior of Lmx1b mutant cells that cross into the ventral mesenchyme, as well as previous chimera analysis in which mutant cells spread evenly in the ventral limb and form patches in the dorsal side, suggest that cell affinity differences prevent intermingling of dorsal and ventral cells. ^