982 resultados para Morphological diversity
Resumo:
Both MI and MII triploids were successfully produced by heat shock in Chinese shrimp Fenneropenaeus chinensis. The inducing conditions for MI and MII triploids were optimized. The highest inducing rate obtained for MI triploids reached more than 90%, and that for MII triploids reached nearly 100% at the nauplius stage as evaluated using flow cytometry. Comparisons of survival rates at larval stages between triploids and diploids or diploids experiencing treatment and diploids without treatment were performed. At larval stage from nauplii to postlarvae, heat shocks lowered survival at larval stages even if the ploidy was not changed. Ploidy did not affect shrimp larvae survival, and no significant difference was found in the survival of shrimp larvae between MI and MII triploids. Highly significant differences were observed in the morphology of triploids and diploids, and no apparent difference was found in the morphology of MI and MII triploids at the grow-out stages. Discriminating formulae for triploid and diploid shrimp at grow-out stage were developed and could be used to distinguish triploids from diploids based on morphological parameters. MI and MII triploids of shrimp have the potential to be used in aquaculture.
Resumo:
Recently, beta-thymosin-like proteins with multiple thymosin domains (defined as thymosin-repeated proteins) have been identified from invertebrate. In the present study, the cDNAs of two thymosin-repeated proteins (designated EsTRP1 and EsTRP2) were cloned from Chinese mitten crab by expressed sequence tags (EST) techniques. BLAST analysis presented three and two thymosin domains in EsTRP1 and EsTRP2, respectively, with the identities amongst the five domains varying from 47% to 100%. Both EsTRP1 and EsTRP2 shared high similarities with previously identified vertebrate beta-thynnosins and invertebrate thymosin-repeated proteins (TRPs) with the identities ranging from 43% to 78%, indicating that EsTRPs were new members of the beta-thymosin family. Real-time RT-PCR assay was adopted to determine the tissue distribution of EsTRPs and their temporal expression profile in hemocytes after pathogen stimulation and injury challenge. The expression of EsTRP1 transcript was predominantly detectable in the tissues of hemocytes, hepatopancreas and gonad with the highest expression in hemocytes, while the highest expression level of EsTRP2 was found in heart. EsTRP1 mRNA expression in hemocytes significantly increased at 3 and 48 h after Listonella anguillarum challenge, but there was no significant variation in EsTRP2 temporal expression profile. The injury challenge reduced the mRNA expression of EsTRPs, with the down-regulation of EsTRP2 expression occurred earlier than that of EsTRP1. The cDNA fragments encoding their mature peptides of EsTRP1 and EsTRP2 were recombined and expressed in Escherichia coli. The activities of recombinant proteins (rEsTRP1 and rEsTRP2) were examined by MTT (3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazoliumbromide) and lysoplate assay. rEsTRP2 could significantly accelerate the growth of human hepatocellular carcinoma cell line, but there was no significant effect of rEsTRP1 on the tumor cell proliferation. Both rEsTRP1 and rEsTRP2 did not possess the ability of killing Micrococcus luteus and L. anguillarum. The differences in the tissue distribution of mRNA transcripts, the response to pathogen stimulation and injury challenge, and the effect of recombinant proteins on human cell proliferation, indicated that there were functional diversity between the two structurally different molecules, EsTRP1 and EsTRP2. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Species in Liangzi Lake were clustered into four trophic groups: Hemiramphus kurumeus and Hemiculter bleekeri bleekeri fed predominantly on terrestrial insects; Carassius auratus auratus and Abbottina rivularis on non-animal food; Hypseleotris swinhonis, Ctenogobius giurinus, Pseudorasbora parva and Toxabramis swinhonis on cladocerans or copepods; Culterichthys erythropterus on decapod shrimps. Gut length, mouth width, mouth height, gill raker length and gill raker spacing, varied widely among species. With the exception of three species pairs (H. swinhonis, C. glurinus; C. erythropterus, H. kurumeus; T. swinhonis, H. bleekeri bleekeri), principal components analysis of morphological variables revealed over-dispersion of species. Canonical correspondence analysis of dietary and morphological data revealed five significant dietary-morphological correlations. The first three roots explained > 85% of the total variance. The first root reflected mainly the relationship of gut length to non-animal feud, with an increase in gut length associated with an increase in non-animal food. The second root was influenced strongly by the relationship of the gill raker spacing to consumption of copepods, with an increase in gill raker spacing associated positively with copepods in the diet. The third root was influenced by the relationship of mouth gape to consumption of fish and decapod shrimps, with an increase in mouth gape associated with more fish and decapod shrimps in the diet. These significant dietary-morphological relationships supported the eco-morphological hypotheses that fish morphology influence food use, and morphological variation is important in determining ecological segregation of co-existing fish species. (C) 2001 The Fisheries Society of the British Isles.
Resumo:
PS I, PS II and light-harvesting complexes (LHC) in oxygen evolving photosynthetic organisms were reviewed. These organisms include cyanobacteria, red algae, brown algae, diatoms, chrysophytes, dinophytes, xanthophytes, crypophytes, green algae and green plants. The diversity of pigment-protein complexes that fuel the conversion of radiant energy to chemical bond energy was highlighted, and the evolutionary relationships among the LHC structural polypeptides and the characteristics of the fluorescence emission of PS I at 77 K was discussed.
Resumo:
A Gymnodinium-like species was studied with light microscopy (LM) and scanning electron microscopy (SEM). Also, the internal transcribed spacers (containing 5.8S rDNA) and large ribosomal subunit DNA (D1-D2) sequences were obtained by PCR amplification, and then sequenced to explore the relationships within our isolate, Gymnodinium and other Gymnodinium-like species, including Karenia, Gyrodinium, Karlodinium and Symbiodinium. The LM observation showed that the species was characterized by moving in a levorotatory direction, visible hypocone, epicone and transverse groove, all of which are typical for Gymnodinium. In addition, two flagella could be found under SEM. The phylogenetic analysis revealed that the isolate grouped with Symbiodium, rather than other relevant dinoflagellates. All results showed our isolate belongs to Symbiodium. The strain was isolated from a red tide water sample, denoting that Symbiodium may be causative species for algal bloom.
Resumo:
The bay scallop Argopecten irradians is a hermaphroditic bivalve native to the Atlantic coast of the United States that was introduced to China for aquaculture production in 1982. It now supports a major aquaculture industry in China. Introduced species often start with limited genetic variability, which is problematic for the further selective breeding. Bay scallop aquaculture is exclusively hatchery based and as the initial introduction consisted of only 26 scallops, there have been concerns about inbreeding and inbreeding depression in cultured populations in China. In this study, eleven simple sequence repeat (SSR) markers were used to compare genetic variation in cultured populations from China with that in a natural population from the east coast of America. Although the difference in heterozygosity was small, the Chinese populations lost 9 of the 45 alleles (20%) found in the wild population. The reduced allele diversity suggests that the Chinese bay scallop populations experienced a bottleneck in genetic diversity that remains significant despite several recent introductions of new stocks aimed at expanding the gene pool. The loss of allele diversity may affect future efforts in selective breeding and domestication, and results of this study highlight the need for additional introductions, advanced breeding programs that minimize inbreeding and continued genetic monitoring. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
This is the first report of microsatellite-centromere mapping in this commercial species Fenneropenaeus Chinensis, and will be important for providing fixed points in the linkage groups of genetic maps. Triploid Chinese shrimp was induced by heat shock. The fertilized eggs were treated either by retention of the first polar body or the second polar body to produce Meiosis I (MI) or Meiosis II (MII) triploid. The triploidy status in each Chinese shrimp could be confirmed by nine polymorphic microsatellite loci, in which the parents with different alleles and the female parents were each heterozygous. The nine loci were mapped in relation to their centromeres in three MII triploid families, which were induced by retention of the second polar bodies after fertilization with sperm. Microsatellite-centromere (M-C) distances ranged from 9.6 cM to 37 cM under the assumption of complete interference. Information on the positions of centromeres in relation to the microsatellite loci will represent a contribution towards assembly of genetic maps in F. chinensis. Twelve polymorphic microsatellites were used to assess the heterozygosity and allelic diversity in different ploidy classes. As expected, triploids were significantly more polymorphic than diploids. The diploids had an average heterozygosity and allelic diversity value of 0.86, whereas the triploids heterozygosity averaged 0.93 and had allelic diversity value of 1.29. However, MI triploids were not significantly more polymorphic than MII in the microsatellite loci.
Resumo:
Chang-Fu Wang, Xian-Qiu Ren, and Run-Lin Xu (2010) Composition, abundance, and diversity of the Peracarida on different vegetation types in the Qi'ao-Dan'gan Island Mangrove Nature Reserve on Qi'ao Island in the Pearl River estuary, China. Zoological Studies 49(5): 608-615. Almost nothing is known about the Peracarida in the Pearl River estuary. This is the 1st report to study the composition, abundance, and diversity of the Peracarida in the Qi'ao-Dan'gan I. Mangrove Nature Reserve on Qi'ao I., in the Pearl River estuary, southern China. Bimonthly samplings were carried out in 3 representative vegetation types (mangrove arbor, emergent plants, and seaweed) for 2 yr. Using a Peterson grab, 1940 individuals (id.) were collected in total, including 11 species of 6 genera, 5 families, and 3 orders (Amphipoda, Isopoda, and Tanaidacean). Discapseudes mackiei Bamber 1997 was the dominant species with the highest density of 1,432 incl./m(2). The effect of temperature on the abundance of Peracarida was significant (p < 0.01), and the optimum temperature was 22-23 degrees C in both the mangrove arbor and seaweed. The results showed that the abundance of the Peracarida was higher in the mangrove arbor, while the diversity, especially Amphipoda diversity, was higher in the seaweed. In contrast, emergent plants provided no suitable habitats for the Peracarida. http://zoolstud.sinica.edu.tw/Journals/49.5/608.pdf
Resumo:
The taxonomic characterization of two strains of Antarctic ice algae, Chlamydomonas sp. ICE-L and Chlamydomonas sp. ICE-W, were analyzed on the basis of morphological and molecular traits. The results indicate that they are the same species and belong to Chlamydomonas (Chlorophyta). According to I SS rDNA and ITS-I sequences they are very close relatives of Chlamydomonas sp. Antarctic 2E9, if not identified as such. They belong to the 'monadina clade', Cd. monadina and Cm. subdivisa as the sister group, on the basis of 18S rDNA sequence. They occur in 'Chlamydomonas clade' according to rbcL sequencing and are close relatives of Cd. kuwadae. The ITS sequences of ICE-L and ICE-W are 1302 base pairs and 1300 base pairs in length, the longest Volvocales ITS sequences ever reported.
Resumo:
The authors would like to thank Jin Sun, Jian Sun, Liangliang Kong, Nianshuang Wang, Chunhui Wang, Linbao Zhang and Ying Zhang for their assistance in the project. This work was supported by China Ocean Mineral Resources R&D Association grants DYXM-115-02-2-20 and DYXM-115-02-2-6, Hi-Tech Research and Development Program of China grant 2007AA091903, China National Natural Science Foundation grant 40576069, National Basic Research Program of China grant 2009CB219506 and the Fundamental Research Funds for the Central Universities of China grant 09CX05005A. M. G. K. was funded by incentive funds provided by the UofL-EVPR office and the US National Science Foundation (EF-0412129).
Resumo:
The ecological characteristics of the deep-sea amoA-encoding archaea (AEA) are largely unsolved. Our aim was to study the diversity, structure and distribution of the AEA community in the sediments of the tropical West Pacific Continental Margin, to develop a general view of the AEA biogeography in the deep-sea extreme environment. Archaeal amoA clone libraries were constructed. Diverse and novel amoA sequences were identified, with the Bohol Sea, Bashi Strait and Sibuyan Sea harbouring the highest and the Bicol Shelf the lowest AEA diversity. Phylogenetic and statistical analyses illustrate a heterogeneous distribution of the AEA community, probably caused by the differential distribution of the terrestrial or estuarine AEA in the various sampling sites. The deep-sea sedimentary environments potentially harbour diverse and novel AEA in the tropical West Pacific Continental Margin. The stations in the Philippine inland seas (including station 3043) may represent AEA assemblages with various terrestrial influences and the stations connected directly to the open Philippine Sea may represent marine environment-dominant AEA assemblages. Our study indicates the potential importance of geological and climatic events in the transport of terrestrial micro-organisms to the deep-sea sedimentary environments, almost totally neglected previously.
Resumo:
Ammonia-oxidizing archaea (AOA) have recently been found to be potentially important in nitrogen cycling in a variety of environments, such as terrestrial soils, wastewater treatment reactors, marine waters and sediments, and especially in estuaries, where high input of anthropogenic nitrogen is often experienced. The sedimentary AOA diversity, community structure and spatial distribution in the Changjiang Estuary and the adjacent East China Sea were studied. Multivariate statistical analysis indicated that the archaeal amoA genotype communities could be clustered according to sampling transects, and the station located in an estuarine mixing zone harboured a distinct AOA community. The distribution of AOA communities correlated significantly with the gradients of surface-water salinity and sediment sorting coefficient. The spatial distribution of putative soil-related AOA in certain sampling stations indicated a strong impact of the Changjiang freshwater discharge on the marine benthic microbial ecosystem. Besides freshwater, nutrients, organic matter and suspended particles, the Changjiang Diluted Water might also contribute to the transport of terrestrial archaea into the seawater and sediments along its flow path.
Resumo:
A gene-clone-library-based molecular approach was used to study the nirS-encoding bacteria-environment relationship in the sediments of the eutrophic Jiaozhou Bay. Diverse nirS sequences were recovered and most of them were related to the marine cluster I group, ubiquitous in estuarine, coastal, and marine environments. Some NirS sequences were unique to the Jiaozhou Bay, such as the marine subcluster VIIg sequences. Most of the Jiaozhou Bay NirS sequences had their closest matches originally detected in estuarine and marine sediments, especially from the Chesapeake Bay, indicating similarity of the denitrifying bacterial communities in similar coastal environments in spite of geographical distance. Multivariate statistical analyses indicated that the spatial distribution of the nirS-encoding bacterial assemblages is highly correlated with environmental factors, such as sediment silt content, NH4+ concentration, and OrgC/OrgN. The nirS-encoding bacterial assemblages in the most hypernutrified stations could be easily distinguished from that of the least eutrophic station. For the first time, the sedimentological condition was found to influence the structure and distribution of the sediment denitrifying bacterial community.
Resumo:
Protease-producing bacteria are known to play an important role in degrading sedimentary particular organic nitrogen, and yet, their diversity and extracellular proteases remain largely unknown. In this paper, the diversity of the cultivable protease-producing bacteria and their extracellular proteases in the sediments of the South China Sea was investigated. The richness of the cultivable protease-producing bacteria reached 10(6) cells/g in all sediment samples. Analysis of the 16S rRNA gene sequences revealed that the predominant cultivated protease-producing bacteria are Gammaproteobacteria affiliated with the genera Pseudoalteromonas, Alteromonas, Marinobacter, Idiomarina, Halomonas, Vibrio, Shewanella, Pseudomonas, and Rheinheimera, with Alteromonas (34.6%) and Pseudoalteromonas (28.2%) as the predominant groups. Inhibitor analysis showed that nearly all the extracellular proteases from the bacteria are serine proteases or metalloproteases. Moreover, these proteases have different hydrolytic ability to different proteins, reflecting they may belong to different kinds of serine proteases or metalloproteases. To our knowledge, this study represents the first report of the diversity of bacterial proteases in deep-sea sediments.