973 resultados para Monte-Carlo cinétique
Resumo:
Introduction Due to their high spatial resolution diodes are often used for small field relative output factor measurements. However, a field size specific correction factor [1] is required and corrects for diode detector over-response at small field sizes. A recent Monte Carlo based study has shown that it is possible to design a diode detector that produces measured relative output factors that are equivalent to those in water. This is accomplished by introducing an air gap at the upstream end of the diode [2]. The aim of this study was to physically construct this diode by placing an ‘air cap’ on the end of a commercially available diode (the PTW 60016 electron diode). The output factors subsequently measured with the new diode design were compared to current benchmark small field output factor measurements. Methods A water-tight ‘cap’ was constructed so that it could be placed over the upstream end of the diode. The cap was able to be offset from the end of the diode, thus creating an air gap. The air gap width was the same as the diode width (7 mm) and the thickness of the air gap could be varied. Output factor measurements were made using square field sizes of side length from 5 to 50 mm, using a 6 MV photon beam. The set of output factor measurements were repeated with the air gap thickness set to 0, 0.5, 1.0 and 1.5 mm. The optimal air gap thickness was found in a similar manner to that proposed by Charles et al. [2]. An IBA stereotactic field diode, corrected using Monte Carlo calculated kq,clin,kq,msr values [3] was used as the gold standard. Results The optimal air thickness required for the PTW 60016 electron diode was 1.0 mm. This was close to the Monte Carlo predicted value of 1.15 mm2. The sensitivity of the new diode design was independent of field size (kq,clin,kq,msr = 1.000 at all field sizes) to within 1 %. Discussion and conclusions The work of Charles et al. [2] has been proven experimentally. An existing commercial diode has been converted into a correction-less small field diode by the simple addition of an ‘air cap’. The method of applying a cap to create the new diode leads to the diode being dual purpose, as without the cap it is still an unmodified electron diode.
Resumo:
Introduction This study investigated the sensitivity of calculated stereotactic radiotherapy and radiosurgery doses to the accuracy of the beam data used by the treatment planning system. Methods Two sets of field output factors were acquired using fields smaller than approximately 1 cm2, for inclusion in beam data used by the iPlan treatment planning system (Brainlab, Feldkirchen, Germany). One set of output factors were measured using an Exradin A16 ion chamber (Standard Imaging, Middleton, USA). Although this chamber has a relatively small collecting volume (0.007 cm3), measurements made in small fields using this chamber are subject to the effects of volume averaging, electronic disequilibrium and chamber perturbations. The second, more accurate, set of measurements were obtained by applying perturbation correction factors, calculated using Monte Carlo simulations according to a method recommended by Cranmer-Sargison et al. [1] to measurements made using a 60017 unshielded electron diode (PTW, Freiburg, Germany). A series of 12 sample patient treatments were used to investigate the effects of beam data accuracy on resulting planned dose. These treatments, which involved 135 fields, were planned for delivery via static conformal arcs and 3DCRT techniques, to targets ranging from prostates (up to 8 cm across) to meningiomas (usually more than 2 cm across) to arterioveinous malformations, acoustic neuromas and brain metastases (often less than 2 cm across). Isocentre doses were calculated for all of these fields using iPlan, and the results of using the two different sets of beam data were evaluated. Results While the isocentre doses for many fields are identical (difference = 0.0 %), there is a general trend for the doses calculated using the data obtained from corrected diode measurements to exceed the doses calculated using the less-accurate Exradin ion chamber measurements (difference\0.0 %). There are several alarming outliers (circled in the Fig. 1) where doses differ by more than 3 %, in beams from sample treatments planned for volumes up to 2 cm across. Discussion and conclusions These results demonstrate that treatment planning dose calculations for SRT/SRS treatments can be substantially affected when beam data for fields smaller than approximately 1 cm2 are measured inaccurately, even when treatment volumes are up to 2 cm across.
Resumo:
The purpose of this study was to investigate the effect of very small air gaps (less than 1 mm) on the dosimetry of small photon fields used for stereotactic treatments. Measurements were performed with optically stimulated luminescent dosimeters (OSLDs) for 6 MV photons on a Varian 21iX linear accelerator with a Brainlab lMLC attachment for square field sizes down to 6 mm 9 6 mm. Monte Carlo simulations were performed using EGSnrc C++ user code cavity. It was found that the Monte Carlo model used in this study accurately simulated the OSLD measurements on the linear accelerator. For the 6 mm field size, the 0.5 mm air gap upstream to the active area of the OSLD caused a 5.3 % dose reduction relative to a Monte Carlo simulation with no air gap...
Resumo:
Objective Recently, Taylor et al. reported that use of the BrainLAB m3 microMLC, for stereotactic radiosurgery, results in a decreased out-of-field dose in the direction of leaf-motion compared to the outof- field dose measured in the direction orthogonal to leaf-motion [1]. It was recommended that, where possible, patients should be treated with their superior–inferior axes aligned with the microMLCs leafmotion direction, to minimise out-of-field doses [1]. This study aimed, therefore, to examine the causes of this asymmetry in outof- field dose and, in particular, to establish that a similar recommendation need not be made for radiotherapy treatments delivered by linear accelerators without external micro-collimation systems. Methods Monte Carlo simulations were used to study out-of-field dose from different linear accelerators (the Varian Clinacs 21iX and 600C and the Elekta Precise) with and without internal MLCs and external microMLCs [2]. Results Simulation results for the Varian Clinac 600C linear accelerator with BrainLAB m3 microMLC confirm Taylor et als [1] published experimental data. The out-of-field dose in the leaf motion direction is deposited by lower energy (more obliquely scattered) photons than the out-of-field dose in the orthogonal direction. Linear accelerators without microMLCs produce no asymmetry in out-offield dose. Conclusions The asymmetry in out-of-field dose previously measured by Taylor et al. [1] results from the shielding characteristics of the BrainLAB m3 microMLC device and is not produced by the linear accelerator to which it is attached.
Resumo:
Established Monte Carlo user codes BEAMnrc and DOSXYZnrc permit the accurate and straightforward simulation of radiotherapy experiments and treatments delivered from multiple beam angles. However, when an electronic portal imaging detector (EPID) is included in these simulations, treatment delivery from non-zero beam angles becomes problematic. This study introduces CTCombine, a purpose-built code for rotating selected CT data volumes, converting CT numbers to mass densities, combining the results with model EPIDs and writing output in a form which can easily be read and used by the dose calculation code DOSXYZnrc...
Resumo:
This paper presents a method for the estimation of thrust model parameters of uninhabited airborne systems using specific flight tests. Particular tests are proposed to simplify the estimation. The proposed estimation method is based on three steps. The first step uses a regression model in which the thrust is assumed constant. This allows us to obtain biased initial estimates of the aerodynamic coeficients of the surge model. In the second step, a robust nonlinear state estimator is implemented using the initial parameter estimates, and the model is augmented by considering the thrust as random walk. In the third step, the estimate of the thrust obtained by the observer is used to fit a polynomial model in terms of the propeller advanced ratio. We consider a numerical example based on Monte-Carlo simulations to quantify the sampling properties of the proposed estimator given realistic flight conditions.
Resumo:
A robust visual tracking system requires an object appearance model that is able to handle occlusion, pose, and illumination variations in the video stream. This can be difficult to accomplish when the model is trained using only a single image. In this paper, we first propose a tracking approach based on affine subspaces (constructed from several images) which are able to accommodate the abovementioned variations. We use affine subspaces not only to represent the object, but also the candidate areas that the object may occupy. We furthermore propose a novel approach to measure affine subspace-to-subspace distance via the use of non-Euclidean geometry of Grassmann manifolds. The tracking problem is then considered as an inference task in a Markov Chain Monte Carlo framework via particle filtering. Quantitative evaluation on challenging video sequences indicates that the proposed approach obtains considerably better performance than several recent state-of-the-art methods such as Tracking-Learning-Detection and MILtrack.
Computation of ECG signal features using MCMC modelling in software and FPGA reconfigurable hardware
Resumo:
Computational optimisation of clinically important electrocardiogram signal features, within a single heart beat, using a Markov-chain Monte Carlo (MCMC) method is undertaken. A detailed, efficient data-driven software implementation of an MCMC algorithm has been shown. Initially software parallelisation is explored and has been shown that despite the large amount of model parameter inter-dependency that parallelisation is possible. Also, an initial reconfigurable hardware approach is explored for future applicability to real-time computation on a portable ECG device, under continuous extended use.
Resumo:
A bioeconomic model was developed to evaluate the potential performance of brown tiger prawn stock enhancement in Exmouth Gulf, Australia. This paper presents the framework for the bioeconomic model and risk assessment for all components of a stock enhancement operation, i.e. hatchery, grow-out, releasing, population dynamics, fishery, and monitoring, for a commercial scale enhancement of about 100 metric tonnes, a 25% increase in average annual catch in Exmouth Gulf. The model incorporates uncertainty in estimates of parameters by using a distribution for the parameter over a certain range, based on experiments, published data, or similar studies. Monte Carlo simulation was then used to quantify the effects of these uncertainties on the model-output and on the economic potential of a particular production target. The model incorporates density-dependent effects in the nursery grounds of brown tiger prawns. The results predict that a release of 21 million 1 g prawns would produce an estimated enhanced prawn catch of about 100 t. This scale of enhancement has a 66.5% chance of making a profit. The largest contributor to the overall uncertainty of the enhanced prawn catch was the post-release mortality, followed by the density-dependent mortality caused by released prawns. These two mortality rates are most difficult to estimate in practice and are much under-researched in stock enhancement.
Resumo:
This paper develops a semiparametric estimation approach for mixed count regression models based on series expansion for the unknown density of the unobserved heterogeneity. We use the generalized Laguerre series expansion around a gamma baseline density to model unobserved heterogeneity in a Poisson mixture model. We establish the consistency of the estimator and present a computational strategy to implement the proposed estimation techniques in the standard count model as well as in truncated, censored, and zero-inflated count regression models. Monte Carlo evidence shows that the finite sample behavior of the estimator is quite good. The paper applies the method to a model of individual shopping behavior. © 1999 Elsevier Science S.A. All rights reserved.
Resumo:
This paper addresses the problem of determining optimal designs for biological process models with intractable likelihoods, with the goal of parameter inference. The Bayesian approach is to choose a design that maximises the mean of a utility, and the utility is a function of the posterior distribution. Therefore, its estimation requires likelihood evaluations. However, many problems in experimental design involve models with intractable likelihoods, that is, likelihoods that are neither analytic nor can be computed in a reasonable amount of time. We propose a novel solution using indirect inference (II), a well established method in the literature, and the Markov chain Monte Carlo (MCMC) algorithm of Müller et al. (2004). Indirect inference employs an auxiliary model with a tractable likelihood in conjunction with the generative model, the assumed true model of interest, which has an intractable likelihood. Our approach is to estimate a map between the parameters of the generative and auxiliary models, using simulations from the generative model. An II posterior distribution is formed to expedite utility estimation. We also present a modification to the utility that allows the Müller algorithm to sample from a substantially sharpened utility surface, with little computational effort. Unlike competing methods, the II approach can handle complex design problems for models with intractable likelihoods on a continuous design space, with possible extension to many observations. The methodology is demonstrated using two stochastic models; a simple tractable death process used to validate the approach, and a motivating stochastic model for the population evolution of macroparasites.
Resumo:
Textured silicon surfaces are widely used in manufacturing of solar cells due to increasing the light absorption probability and also the antireflection properties. However, these Si surfaces have a high density of surface defects that need to be passivated. In this study, the effect of the microscopic surface texture on the plasma surface passivation of solar cells is investigated. The movement of 105 H+ ions in the texture-modified plasma sheath is studied by Monte Carlo numerical simulation. The hydrogen ions are driven by the combined electric field of the plasma sheath and the textured surface. The ion dynamics is simulated, and the relative ion distribution over the textured substrate is presented. This distribution can be used to interpret the quality of the Si dangling bonds saturation and consequently, the direct plasma surface passivation.
Resumo:
The formation of clearly separated vertical graphenenanosheets on silicon nanograss support is demonstrated. The plasma-enabled, two-stage mask-free process produced self-organized vertical graphenes of a few carbon layers (as confirmed by advanced microanalysis), prominently oriented in the substrate center–substrate edge direction. It is shown that the width of the alignment zone depends on the substrate conductivity, and thus the electric field in the vicinity of the growth surface is responsible for the graphene alignment. This finding is confirmed by the Monte Carlo simulations of the ion flux distribution in the silicon nanograss pattern.
Resumo:
It is demonstrated that a magnetic field has a profound effect on the length of a single-wall carbon nanotube (SWCNT) synthesized in the arc discharge. The average length of SWCNT increases by a factor of 2 in discharge with magnetic field as compared with the discharge without magnetic field, and the yield of long nanotubes with lengths above 5 μm also increases. A model of SWCNT growth on metal catalyst in arc plasma was developed. Monte-Carlo simulations confirm that the increase of the plasma density in the magnetic field leads to an increase in the nanotube growth rate and thus leads to longer nanotubes.
Resumo:
It is shown that, owing to selective delivery of ionic and neutral building blocks directly from the ionized gas phase and via surface migration, plasma environments offer a better deal of deterministic synthesis of ordered nanoassemblies compared to thermal chemical vapor deposition. The results of hybrid Monte Carlo (gas phase) and adatom self-organization (surface) simulation suggest that higher aspect ratios and better size and pattern uniformity of carbon nanotip microemitters can be achieved via the plasma route. © 2006 American Institute of Physics.