967 resultados para Molecular-orbital Methods
Resumo:
Bovine mastitis, an inflammatory disease of the mammary gland, is one of the most costly diseases affecting the dairy industry. The treatment and prevention of this disease is linked heavily to the use of antibiotics in agriculture and early detection of the primary pathogen is essential to control the disease. Milk samples (n=67) from cows suffering from mastitis were analyzed for the presence of pathogens using PCR electrospray-ionization mass spectrometry (PCR/ESI-MS) and were compared with standard culture diagnostic methods. Concurrent identification of the primary mastitis pathogens was obtained for 64% of the tested milk samples, whereas divergent results were obtained for 27% of the samples. The PCR/ESI-MS failed to identify some of the primary pathogens in 18% of the samples, but identified other pathogens as well as microorganisms in samples that were negative by culture. The PCR/ESI-MS identified bacteria to the species level as well as yeasts and molds in samples that contained a mixed bacterial culture (9%). The sensitivity of the PCR/ESI-MS for the most common pathogens ranged from 57.1 to 100% and the specificity ranged from 69.8 to 100% using culture as gold standard. The PCR/ESI-MS also revealed the presence of the methicillin-resistant gene mecA in 16.2% of the milk samples, which correlated with the simultaneous detection of staphylococci including Staphylococcus aureus. We demonstrated that PCR/ESI-MS, a more rapid diagnostic platform compared with bacterial culture, has the significant potential to serve as an important screening method in the diagnosis of bovine clinical mastitis and has the capacity to be used in infection control programs for both subclinical and clinical disease.
Resumo:
Methods are described for working with Nosema apis and Nosema ceranae in the field and in the laboratory. For fieldwork, different sampling methods are described to determine colony level infections at a given point in time, but also for following the temporal infection dynamics. Suggestions are made for how to standardise field trials for evaluating treatments and disease impact. The laboratory methods described include different means for determining colony level and individual bee infection levels and methods for species determination, including light microscopy, electron microscopy, and molecular methods (PCR). Suggestions are made for how to standardise cage trials, and different inoculation methods for infecting bees are described, including control methods for spore viability. A cell culture system for in vitro rearing of Nosema spp. is described. Finally, how to conduct different types of experiments are described, including infectious dose, dose effects, course of infection and longevity tests
Resumo:
A 318-metre-long sedimentary profile drilled by the International Continental Scientific Drilling Program (ICDP) at Site 5011-1 in Lake El’gygytgyn, Far East Russian Arctic, has been analysed for its sedimentologic response to global climate modes by chronostratigraphic methods. The 12 km wide lake is sited off-centre in an 18 km large crater that was created by the impact of a meteorite 3.58 Ma ago. Since then sediments have been continuously deposited. For establishing their chronology, major reversals of the earth’s magnetic field provided initial tie points for the age model, confirming that the impact occurred in the earliest geomagnetic Gauss chron. Various stratigraphic parameters, reflecting redox conditions at the lake floor and climatic conditions in the catchment were tuned synchronously to Northern Hemisphere insolation variations and the marine oxygen isotope stack, respectively. Thus, a robust age model comprising more than 600 tie points could be defined. It could be shown that deposition of sediments in Lake El’gygytgyn occurred in concert with global climatic cycles. The upper �160m of sediments represent the past 3.3 Ma, equivalent to sedimentation rates of 4 to 5 cm ka−1, whereas the lower 160m represent just the first 0.3 Ma after the impact, equivalent to sedimentation rates in the order of 45 cm ka−1. This study also provides orbitally tuned ages for a total of 8 tephras deposited in Lake El’gygytgyn.
Resumo:
Molecular data are now widely used in epidemiological studies to investigate the transmission, distribution, biology, and diversity of pathogens. Our objective was to establish recommendations to support good scientific reporting of molecular epidemiological studies to encourage authors to consider specific threats to valid inference. The statement Strengthening the Reporting of Molecular Epidemiology for Infectious Diseases (STROME-ID) builds upon the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) initiative. The STROME-ID statement was developed by a working group of epidemiologists, statisticians, bioinformaticians, virologists, and microbiologists with expertise in control of infection and communicable diseases. The statement focuses on issues relating to the reporting of epidemiological studies of infectious diseases using molecular data that were not addressed by STROBE. STROME-ID addresses terminology, measures of genetic diversity within pathogen populations, laboratory methods, sample collection, use of molecular markers, molecular clocks, timeframe, multiple-strain infections, non-independence of infectious-disease data, missing data, ascertainment bias, consistency between molecular and epidemiological data, and ethical considerations with respect to infectious-disease research. In total, 20 items were added to the 22 item STROBE checklist. When used, the STROME-ID recommendations should advance the quality and transparency of scientific reporting, with clear benefits for evidence reviews and health-policy decision making.
Resumo:
Primate immunodeficiency viruses, or lentiviruses (HIV-1, HIV-2, and SIV), and hepatitis delta virus (HDV) are RNA viruses characterized by rapid evolution. Infection by primate immunodeficiency viruses usually results in the development of acquired immunodeficiency syndrome (AIDS) in humans and AIDS-like illnesses in Asian macaques. Similarly, hepatitis delta virus infection causes hepatitis and liver cancer in humans. These viruses are heterogeneous within an infected patient and among individuals. Substitution rates in the virus genomes are high and vary in different lineages and among sites. Methods of phylogenetic analysis were applied to study the evolution of primate lentiviruses and the hepatitis delta virus. The following results have been obtained: (1) The substitution rate varies among sites of primate lentivirus genes according to the two parameter gamma distribution, with the shape parameter $\alpha$ being close to 1. (2) Primate immunodeficiency viruses fall into species-specific lineages. Therefore, viral transmissions across primate species are not as frequent as suggested by previous authors. (3) Primate lentiviruses have acquired or lost their pathogenicity several times in the course of evolution. (4) Evidence was provided for multiple infections of a North American patient by distinct HIV-1 strains of the B subtype. (5) Computer simulations indicate that the probability of committing an error in testing HIV transmission depends on the number of virus sequences and their length, the divergence times among sequences, and the model of nucleotide substitution. (6) For future investigations of HIV-1 transmissions, using longer virus sequences and avoiding the use of distant outgroups is recommended. (7) Hepatitis delta virus strains are usually related according to the geographic region of isolation. (8) Evolution of HDV is characterized by the rate of synonymous substitution being lower than the nonsynonymous substitution rate and the rate of evolution of the noncoding region. (9) There is a strong preference for G and C nucleotides at the third codon positions of the HDV coding region. ^
Resumo:
Vector control is the mainstay of malaria control programmes. Successful vector control profoundly relies on accurate information on the target mosquito populations in order to choose the most appropriate intervention for a given mosquito species and to monitor its impact. An impediment to identify mosquito species is the existence of morphologically identical sibling species that play different roles in the transmission of pathogens and parasites. Currently PCR diagnostics are used to distinguish between sibling species. PCR based methods are, however, expensive, time-consuming and their development requires a priori DNA sequence information. Here, we evaluated an inexpensive molecular proteomics approach for Anopheles species: matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). MALDI-TOF MS is a well developed protein profiling tool for the identification of microorganisms but so far has received little attention as a diagnostic tool in entomology. We measured MS spectra from specimens of 32 laboratory colonies and 2 field populations representing 12 Anopheles species including the A. gambiae species complex. An important step in the study was the advancement and implementation of a bioinformatics approach improving the resolution over previously applied cluster analysis. Borrowing tools for linear discriminant analysis from genomics, MALDI-TOF MS accurately identified taxonomically closely related mosquito species, including the separation between the M and S molecular forms of A. gambiae sensu stricto. The approach also classifies specimens from different laboratory colonies; hence proving also very promising for its use in colony authentication as part of quality assurance in laboratory studies. While being exceptionally accurate and robust, MALDI-TOF MS has several advantages over other typing methods, including simple sample preparation and short processing time. As the method does not require DNA sequence information, data can also be reviewed at any later stage for diagnostic or functional patterns without the need for re-designing and re-processing biological material.
Resumo:
In recent years, declines of honey bee populations have received massive media attention worldwide, yet attempts to understand the causes have been hampered by a lack of standardisation of laboratory techniques. Published as a response to this, the COLOSS BEEBOOK is a unique collaborative venture involving 234 bee scientists from 34 countries, who have produced the definitive guide to how to carry out research on honey bees. It is hoped that these volumes will become the standards to be adopted by bee scientists worldwide. Volume I includes approximately 1,100 separate protocols dealing with the study of the honey bee, Apis mellifera. These cover anatomy, behavioural studies, chemical ecology, breeding, genetics, instrumental insemination and queen rearing, pollination, molecular studies, statistics, toxicology and numerous other techniques
Resumo:
OBJECTIVES To summarize the current status of clinicopathological and molecular markers for the prediction of recurrence or progression or both in non-muscle-invasive and survival in muscle-invasive urothelial bladder cancer, to address the reproducibility of pathology and molecular markers, and to provide directions toward implementation of molecular markers in future clinical decision making. METHODS AND MATERIALS Immunohistochemistry, gene signatures, and FGFR3-based molecular grading were used as molecular examples focussing on prognostics and issues related to robustness of pathological and molecular assays. RESULTS The role of molecular markers to predict recurrence is limited, as clinical variables are currently more important. The prediction of progression and survival using molecular markers holds considerable promise. Despite a plethora of prognostic (clinical and molecular) marker studies, reproducibility of pathology and molecular assays has been understudied, and lack of reproducibility is probably the main reason that individual prediction of disease outcome is currently not reliable. CONCLUSIONS Molecular markers are promising to predict progression and survival, but not recurrence. However, none of these are used in the daily clinical routine because of reproducibility issues. Future studies should focus on reproducibility of marker assessment and consistency of study results by incorporating scoring systems to reduce heterogeneity of reporting. This may ultimately lead to incorporation of molecular markers in clinical practice.
Resumo:
PURPOSE Deep molecular response (MR(4.5)) defines a subgroup of patients with chronic myeloid leukemia (CML) who may stay in unmaintained remission after treatment discontinuation. It is unclear how many patients achieve MR(4.5) under different treatment modalities and whether MR(4.5) predicts survival. PATIENTS AND METHODS Patients from the randomized CML-Study IV were analyzed for confirmed MR(4.5) which was defined as ≥ 4.5 log reduction of BCR-ABL on the international scale (IS) and determined by reverse transcriptase polymerase chain reaction in two consecutive analyses. Landmark analyses were performed to assess the impact of MR(4.5) on survival. RESULTS Of 1,551 randomly assigned patients, 1,524 were assessable. After a median observation time of 67.5 months, 5-year overall survival (OS) was 90%, 5-year progression-free-survival was 87.5%, and 8-year OS was 86%. The cumulative incidence of MR(4.5) after 9 years was 70% (median, 4.9 years); confirmed MR(4.5) was 54%. MR(4.5) was reached more quickly with optimized high-dose imatinib than with imatinib 400 mg/day (P = .016). Independent of treatment approach, confirmed MR(4.5) at 4 years predicted significantly higher survival probabilities than 0.1% to 1% IS, which corresponds to complete cytogenetic remission (8-year OS, 92% v 83%; P = .047). High-dose imatinib and early major molecular remission predicted MR(4.5). No patient with confirmed MR(4.5) has experienced progression. CONCLUSION MR(4.5) is a new molecular predictor of long-term outcome, is reached by a majority of patients treated with imatinib, and is achieved more quickly with optimized high-dose imatinib, which may provide an improved therapeutic basis for treatment discontinuation in CML.
Resumo:
Aim. This study was focused on (i) detection of specific BVDV-antibodies within selected cattle farms, (ii) identification of persistently infected (PI) animals and (iii) genetic typing of selected BVDV isolates. Methods. RNA extraction, real-time polymerase chain reaction, ELISA technique, sequencing. Results. Specific BVDV-antibodies were detected in 713 of 1,059 analyzed samples (67.3 per cent). This number is in agreement with findings in many cattle herds around the world. However, the number of positive samples differed in the herds. While 57 samples out of 283 (20.1 per cent) were identified in the first herd, 400 out of 475 (84.2 per cent) and 256 out of 301 (85 per cent) animals were positive in the second and third herd. High number of animals with BVDV RNA was detected in all herds. The real-time PCR assay detected BVDV RNA in 5 of 1068 samples analyzed (0.5 per cent). 4 positive samples out of 490 (0.8 per cent) and 1 out of 301 (0.33 per cent) were found in the second and third herd. The genetic materials of BVDV were not found in the first herd. Data on the number of PI animals were in accord with serological findings in the cattle herds involved in our study. The genetic typing of viral isolates revealed that only BVDV, Type 1 viruses were present. The hylogenetic analysis confirmed two BVDV-1 subtypes, namely b and f and revealed that all 4 viruses from the second farm were typed as BVDV-1b and all of them were absolutely identical in 5’-UTR, but virus from the third farm was typed as BVDV-1f. Conclusion. Our results indicated that the BVDV infection is widespread in cattle herds in the eastern Ukraine, that requires further research and development of new approaches to improve the current situation.
Resumo:
BACKGROUND Chronic hepatitis B virus (HBV) infection affects up to 7 % of the European population. Specific HBV genotypes are associated with rapid progression to end-stage liver disease and sub-optimal interferon treatment responses. Although the geographic distribution of HBV genotypes differs between regions, it has not been studied in Switzerland, which lies at the crossroads of Europe. METHODS In a retrospective analysis of 465 HBV samples collected between 2002 and 2013, we evaluated the HBV genotype distribution and phylogenetic determinants, as well as the prevalence of serological evidence of hepatitis delta, hepatitis C and HIV infections in Switzerland. Baseline characteristics of patients were compared across their region of origin using Fisher's exact test and ANOVA, and risk factors for HBeAg positivity were assessed using logistic regression. RESULTS The Swiss native population represented 15.7 % of HBV-infected patients living in Switzerland. In the overall population, genotype D was most prevalent (58.3 %), whereas genotype A (58.9 %) was the predominant genotype among the Swiss native population. The prevalence of patients with anti-HDV antibodies was 4.4 %. Patients of Swiss origin were most likely to be HBeAg-positive (38.1 %). HBV genotypes of patients living in Switzerland but sharing the same original region of origin were consistent with their place of birth. CONCLUSIONS The molecular epidemiology of HBV infection in Switzerland is driven by migration patterns and not by the genotype distribution of the native population. The prevalence of positive anti-HDV antibodies in our cohort was very low.
Resumo:
This chapter summarises the metabolomic strategies currently in force used in plant science and describes the methods used. The metabolite profiling and fingerprinting of plant tissues through MS- and/or NMR-based approaches and the subsequent identification of biomarkers is detailed. Strategies for the microisolation and de novo identification of unknown biomarkers are also discussed. The various approaches are illustrated by a metabolomic study of the maize response to herbivory. A review of recent metabolomic studies performed on seed and crop plant tissues involving various analytical strategies is provided.
Resumo:
After decades of research on molecular excitons, only few molecular dimers are available on which exciton and vibronic coupling theories can be rigorously tested. In centrosymmetric H-bonded dimers consisting of identical (hetero)aromatic chromophores, the monomer electronic transition dipole moment vectors subtract or add, yielding S0 → S1 and S0 → S2 transitions that are symmetry-forbidden or -allowed, respectively. Symmetry breaking by 12C/13C or H/D isotopic substitution renders the forbidden transition weakly allowed. The excitonic coupling (Davydov splitting) can then be measured between the S0 → S1 and S0 → S2 vibrationless bands. We discuss the mass-specific excitonic spectra of five H-bonded dimers that are supersonically cooled to a few K and investigated using two-color resonant two-photon ionization spectroscopy. The excitonic splittings Δcalc predicted by ab initio methods are 5–25 times larger than the experimental excitonic splittings Δexp. The purely electronic ab initio splittings need to be reduced (“quenched”), reflecting the coupling of the electronic transition to the optically active vibrations of the monomers. The so-called quenching factors Γ < 1 can be determined from experiment (Γexp) and/or calculation (Γcalc). The vibronically quenched splittings Γ·Δcalc are found to nicely reproduce the experimental exciton splittings.
Resumo:
INTRODUCTION Cardiac myocytes utilize three high-capacity Na transport processes whose precise function can determine myocyte fate and the triggering of arrhythmias in pathological settings. We present recent results on the regulation of all three transporters that may be important for an understanding of cardiac function during ischemia/reperfusion episodes. METHODS AND RESULTS Refined ion selective electrode (ISE) techniques and giant patch methods were used to analyze the function of cardiac Na/K pumps, Na/Ca exchange (NCX1), and Na/H exchange (NHE1) in excised cardiac patches and intact myocytes. To consider results cohesively, simulations were developed that account for electroneutrality of the cytoplasm, ion homeostasis, water homeostasis (i.e., cell volume), and cytoplasmic pH. The Na/K pump determines the average life-time of Na ions (3-10 minutes) as well as K ions (>30 minutes) in the cytoplasm. The long time course of K homeostasis can determine the time course of myocyte volume changes after ion homeostasis is perturbed. In excised patches, cardiac Na/K pumps turn on slowly (-30 seconds) with millimolar ATP dependence, when activated for the first time. In steady state, however, pumps are fully active with <0.2 mM ATP and are nearly unaffected by high ADP (2 mM) and Pi (10 mM) concentrations as may occur in ischemia. NCX1s appear to operate with slippage that contributes to background Na influx and inward current in heart. Thus, myocyte Na levels may be regulated by the inactivation reactions of the exchanger which are both Na- and proton-dependent. NHE1 also undergo strong Na-dependent inactivation, whereby a brief rise of cytoplasmic Na can cause inactivation that persists for many minutes after cytoplasmic Na is removed. This mechanism is blocked by pertussis toxin, suggesting involvement of a Na-dependent G-protein. Given that maximal NCX1- and NHE1-mediated ion fluxes are much greater than maximal Na/K pump-mediated Na extrusion in myocytes, the Na-dependent inactivation mechanisms of NCX1 and NHE1 may be important determinants of cardiac Na homeostasis. CONCLUSIONS Na/K pumps appear to be optimized to continue operation when energy reserves are compromised. Both NCX1 and NHE1 activities are regulated by accumulation of cytoplasmic Na. These principles may importantly control cardiac cytoplasmic Na and promote myocyte survival during ischemia/reperfusion episodes by preventing Ca overload.