940 resultados para Molds (Fungi)
Resumo:
Epoxides can be hydrolyzed by fungi to produce chiral diols. The first part of this thesis presents an investigation of the microbial hydrolysis of aziridines comparable in structure to epoxide biotransformation substrates. Biotransformation of the aziridines 1 -methyl-2-phenyl aziridine, 2- phenylaziridine and N-methyl-7-aza bicyclo[4.1.0] heptane was studied using Beauveria sulfurescens, Aspergillus niger and Diplodia gossypina but no evidence for enzymic hydrolysis was obtained. The hydroxylation reaction performed by the fungus Beauveria sulfurescens ATCC 7159 has been studied for many years and several models describing the hydroxylating pattern exhibited by this fungus have been proposed. The second part of this thesis presents a test of the proposed models. The ability of Beauveria sulfurescens to hydroxylate thirty potential substrates was examined, and the data suggest that none of the earlier proposed models accounts for all of the bioconversion results. A possible explanation is proposed, suggesting that there is more than one enzyme responsible for the hydroxylation reactions performed by Beauveria sulfurescens.
Resumo:
Strain improvement of the insect pathogenic fungus Metarhizium anisopUae is necessary to increase its virulence towards agricultural pests and thus improve its commercial efficacy. Nevertheless, the release of genetically modified conidia in crop fields may negatively affect the ecosystem. Controlling conidiation is a potential means of limiting the release of engineered strains since conidia are the infective propagules and the means of dispersal. The purpose of this study was to research the colony development of M. anisopUae to identify potential targets for genetic manipulation to control conidiation. Following Agrobacterium tumefaciem insertional mutagenesis, phenotypic mutants were characterized using Y-shaped adaptor dependent extension PCR. Four of 1 8 colony development recombinants had T-DNA flanking sequences with high homology to genes encoding known signaling pathway proteins that regulate pathogenesis and/or asexual development in filamentous fungi. Conidial density counts and insect bioassays suggested that a Serine/Threonine protein kinase COTl homolog is not essential for conidiation or virulence. Furthermore, a choline kinase homolog is important for conidiation, but not virulence. Finally, the regulator of G protein signaling CAG8 and a NADPH oxidase NoxA homolog are necessary for conidiation and virulence. These genes are candidates for further investigation into the regulatory pathways controlling conidiation to yield insight into promising gene targets for biocontrol strain improvement.
Resumo:
A mycoparasite, Piptocephalis virginiana ^ shows a resemblance to fungal parasites of higher plants in the fine structure of hyphae and haustoria. The morphology and fine structure of host and parasitic fungi have been described. The mode of penetration of the host cell, Choanephora cucurbitarum , probably involves mechanical forces. Although the presence of cell wall degrading enzyme was not detected by conventional techniques, its role in penetration can't be ruled out. A collar around the haustorial neck is formed as an extension of the host cell wall. No papilla was detected although appressorixim was seen during penetration. The young haustorium is enclosed in highly invaginating plasmalemma of the host cell and n\imerous cisternae of endoplasmic reticulum. Appearance of an electron—dense sheath around the mature haustorium seems to coincide with the disappearance of cisternae of endoplasmic reticulum from the host cystoplasm in the vicinity of the haustorium. The role of host cytoplasm particularly of endoplasmic reticulum in the development of the sheath is discussed. Extensive accumulation of spherosomes-like bodies, containing lipids, is found in haustorium, parasite and host hypha. Electron microscope revealed the parasiticculture spore has more lipid content than the axenic culture spore of P. virginiana . The biochemical and cytochemical tests also support these results. The mature spore of C. cucurbitarum possesses a thick three-layered cell wall, different from the hyphal wall. Its germination is accompanied by the formation of an elastic thin inner layer which surrounds the emerging germ tube and the growing hypha. High resolution autoradiography showed that H N-acetyl-glucosamine , a precursor of chitin, was incorporated preferentially in the thin inner layer of the spore wall and also in the cell wall of the growing hypha. When the label was fed to the infected cells, at different intervals after inoculation, grains were observed on the sheath which developed around the haustorium of P. virginiana , 30 hours after inoculation. The significance of these results in relation to the origin and composition of the sheath is discussed.
Resumo:
A comparative study of in vitro chitin synthase activity in mucoraceous hosts of a mycoparasite: Chitin synthase, the enzyme responsible for the synthesis of chitin in fungal cell wall was extracted from young hyphae of Choanephora cucurbitarum and Phascolomyces articulosus, susceptible and resistant hosts, respectively, to the mycoparasite, Piptocephalis virginiana. Crude enzyme was identified and characterized by measuring the incorporation of the substrate [14C]-UDP-N-acetylglucosamine, into chitin. Most activity occurred in mixed membrane fraction. Inhibition of activity with Polyoxin D and activation with proteases, N-acetyl-glucosamine and magnesium and other ions was observed. Properties of the crude enzyme preparation such as cofactor requirement, Vmax , apparent Km value for UDP-GlcNAc, inhibition by Polyoxin D, response to pH and to temperature, and stability at 4°C were determined. Enzyme activity from both fungi displayed basically the same features as the corresponding enzymes reported from other mucoraceous fungi. However, the two preparations from P. articulosus and C. cucurbitarum differed from each other in their expressed activity (i.e., the preparations from ~ articulosus exhibited higher latency and higher specific chitin synthase activity than the corresponding preparations from ~ cucurbitarum). Trypsin was effective in activation only over a narrow concentration range. Acid protease was the most effec.tive activator. En.dogenous protease estimation indicated higher protease activity in C. cucurbitarum than in P. articulosus. The suggestion is made that regulation of chitin synthase activities may be related to host resistance in the mycoparasitic system.
Resumo:
A Gram negative aerobic flagellated bacterium with fungal growth inhibitory properties was isolated from a culture of Trichoderma harzianum. According to its cultural characteristics and biochemical properties it was identified as a strain of Alcaligenes (aeca/is Castellani and Chalmers. Antisera prepared in Balbc mice injected with live and heat-killed bacterial cells gave strong reactions with the homologous immunogen and with ATCC 15554, the type strain of A. taeca/is, but not with Escherichia coli or Enterobacter aerogens in immunoprecipitation and dot immunobinding assays. Growth of Botrytis cinerea Pers. and several other fungi was significantly affected when co-cultured with A. taeca/is on solid media. Its detrimental effect on germination and growth of B. cinerea has been found to be associated with antifungal substances produced by the bacterium and released into the growth medium. A biotest for the antibiotic substances, based on their inhibitory effect on germination of B. cinerea conidia, was developed. This biotest was used to study the properties of these substances, the conditions in which they are produced, and to monitor the steps of their separation during extraction procedures. It has been found that at least two substances could be involved in the antagonistic interaction. One of these is a basic volatile substance and has been identified as ammonia. The other substance is a nonvolatile, dialysable, heat stable, polar compound released into the growth medium. After separation of growth medium samples by Sephadex G-10 column chromatography a single peak with a molecular weight below 700 Daltons exhibited inhibitory activity. From its behaviour in electrophoretic separation in agarose gels it seems that this is a neutral or slightly positively charged.
Resumo:
Fungal metabolism of halogenated and related steroids was investigated. The fungi Aspergillus niger ATCC 9142, Curvularia lunata NRRL 2380 and Rhizopus stolonifer ATCC6227b were studied in this regard. 2l-Fluoro-, 2l-chloro, 2l-bromo- and 2l-methyl-pregn-4-ene-3,20diones were prepared and incubated with ~ niger (a C-2l-hydroxylator) in order to observe the effect of the C-2l substituent on the metabolism of these substrates. In all four cases, the C-2l substituent prevented any significant metabolism of these substrates. llB-Fluoropregn-4-ene-3,20-dione was prepared and incubated with C. lunata (an llB-hydroxylator) and ~ stolonifer (an lla-hydroxylator). With ~ lunata, the ll-fluoro- substituent prevent hydroxylation at the 11 position, but diverted it to a site remote from the fluorine atom. In contrast, with ~ stolonifer the llB-fluoro- substituent, although slowing the apparent rate of hydroxylation, did not prevent its occurrence at the 11a- position. llB-Hydroxypregn-4-ene-3,20-dione was also incubated with R. stolonifer. The llB-hydroxy-;group did not appear to have any significant effect on hydroxylation at the lla- position. The incubation of a substrate, unsaturated at a favoured site of hydroxylation with Rhizopus arrhizus ATCC 11145 provided a complex mixture of products; among them were both the a and S epoxides. The formation of these products is rationalized as arising because of the lack of regio- and stereospecificity of the hydroxylase enzyme(s) involved.
Resumo:
Surface fibrils (fimbriae) have been observed on fungi from every major group. Fimbriae are thought to be involved in the following cell to cell interactions: conjugation, flocculation and adhesion. Several higher fungi exibit two other types of interactions: hyphal fusion (anastomosis) and clamp connection formation. As a prelude to examining the role of fimbriae in these processes, the fimbriae of two fungi that undergo these fusion events were examined. Electron microscopy studies revealed that Coprinus cinereus and Schizophyllum commune are fimbriated. C. cinereus fimbriae were 5 nm in diameter and 0.5 to 20 11m in length. Fimbriae of C. cinereus oidia were more numerous and longer than those of the hyphal stage. S. commune fimbriae were also 5 nm in diameter, but were only 0.5 to 2 11m in length. There was an unequal distribution of fimbriae on the hyphal surfaces of S. commune . Fimbriae were sparsely distributed over the entire hyphal surface, with higher densities of fibrils present on the side growths of the hyphae found in the older sections of the mycelium. Antiserum raised against Ustilago violacea fimbrial protein (AU) crossreacted strongly with 37 and 39 kd C. cinereus mycelial proteins. In contrast, AU bound very weakly to 89 and 92 kd S. commune mycelial proteins. Since AU cross-reacted poorly with S. commune fimbrial proteins, it was impossible to further characterize the fimbriae of this specIes. The 37 and 39 kd C. cinereus proteins, were isolated by electroelution and were shown to be able to form fibrils the same diameter as oidial fimbriae. The 37 kd protein was shown to be composed of several proteins with isoelectric points ranging from pH 6.1 to 7.63. Furthermore, the 37 kd protein was found to be multimeric, while the 39 kd protein was not. These results strongly suggested that the 37 kd protein is the structural fimbrial protein of C. cine reus . Finally, a series of experiments were designed to determine whether fimbriae are required for conjugation in U. violacea Conjugation was inhibited significantly with AU, but not with pre-immune serum or AU preincubated with purified fimbrial protein. Thus, it was concluded that fimbriae play a central role in mating in this organism.
Resumo:
Polyclonal antibodies prepared against the two glycoproteins (Mr 100 and 85 kDa) involved in recognition and attachment of the mycoparasite, Piptocephalis virginiana, to its hosts, Mortierella pusilla and Phascolomyces articulosus, susceptible and resistant, respectively, were employed to localize the antigens at their cell surfaces. Indirect immunocytochemical technique using secondary antibodies labelled with either FITC or gold particles as probes, were used. FITC-Iabelled antibodies revealed a discontinous pattern of fluorescence on the hyphae of MortlerelLa pusilla and no fluorescence on the hyphae of Phascolomyces articulosus. Intensity of fluorescence was high in the germinating spores of both the fungi. Fluoresence could be observed on P. articulosus hyphae pretreated with a commercial proteinase. Fluorescence was not observed on either hyphae or germinating spores of the nonhost M0 r tie re11 a ca ndelabrum and the mycoparasite P. virginiana. Antibodies labelled with gold conjugate showed a different pattern of antigen localization on the hyphal walls of the susceptible and resistant hosts. Patches of gold particles were observed allover the whole cell wall of the susceptible host but only on the inner cell wall layer of the resistant host. Cell wall fragments of the susceptible host but not those of the resistant host, previously incubated with the antibodies inhibited attachment of the mycoparasite. Implications of preferential localization of the antigen in the resistant host and its absence in the nonhost are described.
Resumo:
Extracellular, non-flagellar appendages, termed fimbriae are widespread among fungi. Fungal fimbriae range in diameter from 6-10 nm and exhibit lengths of up to 30 ~m. Fungal fimbriae have been implicated in several functions: adhesion, conjugation and flocculation. A possible role of fimbriae in host-mycoparasite interactions was the focus of this study . Using electron microscopy, fimbriae were observed on the surfaces of Mortiere lla cande labrum, Mortie re lla pusi lla and Phascolomyces articulosus with diameter means of 9.1±0.4 nm, 9.4±0.5 nm and 8.6±0.6 nm, respectively, and lengths of up to 25 ~m. Fimbriae were not observed on the surface of the mycoparasite, Piptocephalis virginiana. Polyclonal antiserum (AU) prepared against the fimbrial protein of Ustilago violacea cross-reacted with 60 and 57 kDa M. candelabrum proteins. In addition, AU cross-reacted with 64 kDa proteins from both M. pusilla and P. articulosus. The proteins that cross-reacted with AU were electroeluted from polyacrylamide gels and were shown to subsequently form fibrils. The diameter means for the electroeluted fibrils were: for M. candelabrum 9.7±0.3 nm, M. pusilla 8.4±0.6 nm and P articulosus 9.2±0.5 nm. Finally, to ascertain the role of fimbriae in host-mycoparasite interactions, AU was incubated with P. virginiana and M. pusilla (mycoparasite/susceptible host) and with P. virginiana and P . articulosus (mycoparasite/ resistant host). It was observed that AU decreased significantly the level of contact between P. virginiana and M. pusilla and between P. virginiana and P. articulosus in comparison to prelmmune serum treatments. Thus, it was proposed that fimbriae might play recognition and attachment roles in early events of mycoparasitism.
Resumo:
Cell surface proteins obtained by alkaline extraction from isolated cell walls of Mortierella pusilla and M. candelabrum, host and nonhost, respectively, to the mycoparasite, Piptocephalis virginiana, were tested for their ability to agglutinate mycoparasite spores. The host cell wall protein extract had a high agglutinating activity (788 a.u. mg- t ) as compared with the nonhost extract (21 a.li. mg- t ). SDS-polyacrylamide gel electrophoresis of the cell wall proteins revealed four protein bands, a, b, c, and d (Mr 117, 100, 85 and 64 kd, respectively) at the host surface, but not at the nonhost surface, except for the faint band c. Deletion of proteins b or c from the host cell wall protein extract significantly reduced its agglutinating activity. Proteins band c, obtained as purified preparations by a series of procedures, were shown to be two glycoproteins. Carbohydrate analysis by gas chromatography demonstrated that glucose and Nacetylglucosamine were the major carbohydrate components of the glycoproteins. It was further shown that the agglutinating activity of the pure preparation containing both band c was 500-850 times that of the single glycoproteins, suggesting the involvement of both glycoproteins in agglutination. The results suggest that the glycoproteins band c are the two subunits of agglutinin present at the host cell surface. The two glycoproteins band c purified from the host cell wall protein extract were further examined after various treatments for their possible role in agglutination, attachment and appressorium formation by the mycoparasite. Results obtained by agglutination and attachment tests showed: (1) the two glycoprotein-s are not only an agglutinin responsible for the mycoparasite spore agglutination, but may also serve as a receptor for the specific recognition, attachment and appressorium formation by the mycoparasite; (2) treatment of the rnycoparasite spores with various sugars revealed that arabinose, glucose and N-acetylglucosamine inhibited the agglutination and attachment activity of the glycoproteins, however, the relative percentage of appressorium formation was not affected by the above sugars; (3) the two glycoproteins are relatively stable with respect to their agglutinin and receptor functions. The present results suggest that the agglutination and attachment may be mediated directly by certain sugars present at the host and mycoparasite cell surfaces while the appressorlum formation may be the response of complementary combinations of both sugar and protein, the two parts of the glycoproteins at the interacting surfaces of two fungi.
Resumo:
Cell surfaces of susceptible host species (Mortierella pusllla and Cboanepilora cucurbitarum ), resistant host (Pilascolomyces articulosus ), nonhost (Mortierella candelabrum ) and the mycoparasite (Piptocepilalis virginiana) were examined for sugar distribution patterns using light and fluorescent microscopy techniques. The susceptible host, resistant host and the mycoparasite species exhibited a similar sugar distribution profile; they all showed N-acetyl glucosamine and D-glucose on their cell wall surfaces. The nonhost cell wall surface showed a positive binding reaction to FITClectins specific for N-acetyl glucosamine and also for OI.-fucose, N-acetyl galactosamine and galactose. Treatment of these fungi with mild concentrations of proteinases (both commercial as well as the mycoparasiteproteinase) resulted in the revelation of additional sugars on the fungal cell walls. The susceptible host treated with proteinase expressed higher levels of N-acetyl glucosamine and D-glucose. The susceptible host also showed the presence of OI.-fucose, N-acetyl galactosamine and galactose. The proteinasetreated susceptible host cell walls also showed an increase in the levels of attachment with the mycoparasite. Treatment of the resistant host with proteinases revealed OI.-fucose in addition to N-acetyl glucosamine and D-glucose. Treatment of the nonhost cell wall with proteinase resulted in the exposure of low levels of D-glucose, in addition to sugars found on the untreated nonhost cell wall surface. The mycoparasite treated with proteinase revealed OI.-fucose, N-acetyl galactosamine and galactose on its cell surface in addition to the sugars N-acetyl glucosamine and D-glucose. Protoplasts were isolated from hosts and nonhost fungi and their surfaces were examined for sugar distribution patterns. The susceptible host and nonhost protoplast membranes showed all the sugars (N-acetyl glucosamine, D-glucose, (It.-fucose, N-acetyl galactosamine and galactose) tested for. The resistant host protoplast membrane however, had only N-acetyl glucosamine and D-glucose exposed. This sugar distribution profile resembles that exhibited by the untreated resistant host cell wall, as well as that shown by the untreated mycoparasite cell surface. Only susceptible host protoplasts were successful in attaching to the mycoparasite surface. Resistant host protoplasts did not show any interaction with the i mycoparasite cell surface. Both susceptible as well as resistant host protoplasts were incapable of attaching to agarose beads surface-coated with specific carbohydrates. The mycoparasite however, did attach to agarose beads surface-coated with either N-acetyl glucosamine, D-glucose/Dmannose or o:,- methyl-D-mannose. The relevance of the cell wall and the protoplast membrane in the light of the present results, in reacting appropriately to bring about either a susceptible, a resistant or a nonhost response has been discussed.
Resumo:
Two enzyme mechanisms were examined: the 21-dehydroxylation of corticosteroids by the anaerobe Eubacterium l en tum, and the hydroxylation of steroids by fungal cytochrome P450. Deuterium labelling techniques were used to study the enzymic dehydroxylation. Corticosteroids doubly labelled (2H) at the C-21 position were incubated with a culture of Eubacterium lentum. It was found that t he enzymic dehydroxylation proceeded with the loss of one 2H f rom C-21 per molecule of substrate. The kinetic isotope ef fect f or the reaction was found to be k~kD = 2. 28. These results suggest that enzyme/substr ate binding in this case may proceed via t he enol form of the substrate. Also , it appears that this binding is, at least in part, the rate determining step of t he reaction. The hydroxylation of steroids by fungal cytochrome P450 was examined by means of a product study. Steroids with a double bond at the A8 (9), ~( lO ), or ~ (ll) position were synthesized. These steroids were then incubated with fungal strains known to use a cytochrome P450 monooxygenase to hydroxylate at positions allylic to these doubl e bonds. The products formed in these incubations indicated that the double bonds had migrated during allylic hydroxylat ion. This suggests that a carbon centred radical or ion may be an intermediate i n the cytochrome P450 cat alytic cycle.
Resumo:
The effect of age on the structure and composition of isolated and purified cell walls from cultures of Choanephora cucurbitarum was investigated by microchemical analyses, visible and infrared spectrophotometry, x-ray diffractometry and electron microscopy. Qualitative evaluation revealed the presence of lipids, proteins, neutral sugars, strong alkali soluble sugars, chitin, chitosan and uronic acids in the cell walls of both the 1 and 7 day old cultures. As the mycelium aged, there was a slight but statistically significant increase in the protein content, and a pronounced rise in the chitin and neutral sugar constituents of the cell walls. Conversely, the decrease in the chitosan content during this period had the net effect of altering the chitin: chitosan ratio from near unity in the younger cultures, to a 2:1 ratio in the 7 day old cell wall samples. Glutaraldehyde-osmium fixed thin sections of the 1 day old vegetative hyphae of £. curbitarum revealed the presence of a monolayered cell wall, which upon aging became bilayered. Replicas of acid hydrolysed cell walls demonstrated that both the 1 and 7 day old samples possessed an outer layer which was composed of finely granular amorphous material and randomly distributed microfibrils. The deposition of an inner secondary layer composed of parallel oriented microfibrils in the older hypha was correlated with an increase in the chitin content in the cell wall. The significance of these results with respect to the intimate relationship between composition and structure is discussed.
Resumo:
The fatty acid composition of the total, neutral, sterol, free fatty acid and polar-lipid fractions in the mycelium of Choanephora cucurbitarum was determined. The major fatty acids in all lipid fractions were palmitic, oleic, linoleic and y-linolenic acid. Different lipid fractions did not show any particular preference for any individual fatty acid; however, the degree of unsaturation was different in various lipid fractions. Addition of glutamic acid to the malt-yeast extract medium resulted in the biosynthesis of a number of long-chain fatty acids beyond y-linolenic acid. These fatty acids, e.g. C22~1' C24:0 and C26=Q were never observed to be present in the fungus when grown on a malt-yeast extract medium without glutamic acid. Furthermore, thin-layer chromatographic analysis showed a larger and denser spot of diphosphatidyl glycerol from the mycelium grown on the glutamic acid medium than from the control mycelium. Various cultural conditions such as temperature, age, pH, light and carbon:nitrogen ratio in the growth medium used in this study did not alter the qualitative profile of fatty acids normally present in the organism. Neither did these conditions stimulate the production of further long-chain fatty acids (C20 - C26) beyond y-linolenic acid as observed in growth media containing glutamic acid. These cultural conditions influenced the degree of unsaturation, this being due mainly to changes in the concentration of y-linolenic acid. The fatty acid pattern of the lipid fractions though the same qualitatively, differed quantitatively due to the variation in the y-linolenic acid content under different cultural conditions. The degree of unsaturation of various lipid fractions decreased with increases in temperature, light intensity and pH, but within each treatment the same pattern of decreasing degree of unsaturation with increasing age was observed. The cultural conditions, used in this study, are also known to influence the degree and rate of development of the parasite, Piptocephalis virginiana. A direct correlation was observed between the levels of y-linolenic acid in C. cucurbitarum during the early stages of growth (24 h) and the degree of parasitism of P. virginiana. The amount of y-linolenic acid present in the host mycelium was found to be unrelated to either the dry weight of the mycelium or to the total lipid contents. K. virginiana is confined to host species which produce y-linolenic acid in their mycelium. The lipid profile of the host, C. cucurbitarum, did not show a significant qualitative or quantitative change in the lipid profile as a result of infection by the parasite, P. virginiana,e However, an increase in the total lipid was observed in the infected host mycelium. The significance of these results is discussed.
Resumo:
The cell wall composition of Choanephora cucur - bitarum and the host-parasite interface, after infection with Piptocephalis virginiana , were examined in detail. The cell walls of C_. cucurbitarum were determined to be composed of chitin (17%), chitosan (28.4%), neutral sugars (7.2%),uronic acid (2.4%), proteins (8.2%) and lipids (13.8%). The structure of hyphal walls investigated by electron microscopy of shadowed replicas before and after alkali-acid hydrolysis, showed two distinct regions: microfibrillar and amorphous. The microfibrils which were composed of mainly chitin, were organized into two distinct layers: an outer, thicker layer of randomly orientated microfibrils and an inner, thin layer of parallel microfibrils.Electronmicrographs of the host-parasite interface of C_. cucurbitarum and the mycoparasite , P_. virginiana , 30 h following inoculation, showed that the sheath zone has a similar electron density to that of the host cell wall. The sheath was not present around the young (18 h old) haustorium. High-resolution autoradiographs of infected host hyphae showed that radioactive N-acetyl-D-glucosamine , a precursor of chitin, was incorporated preferentially in the host cell wall and sheath zone. Cell fractionation of label fed hyphae showed that 84% of the label was present in the cell wall and specifically in the chitin portion of the wall. The antifungal antibiotic, Polyoxin D, a specific inhibitor of the enzyme, chitin synthetase, suppressed the incorporation of the label in the cell wall and sheath zone and resulted in a decrease in electron density of the developing sheath. The significance of these results is discussed in the light of host resistance.