980 resultados para Modified Bessel Function
Resumo:
An area of increasingly interest for the understanding of cell signaling are the spatio-temporal aspects of the different enzymes involved in lipid mediator generation (eicosanoid-forming enzymes, phospholipases and their regulatory kinases and phosphatases) and pools of lipid precursors. The compartmentalization of signaling components within discrete and dynamic sites in the cell is critical for specificity and efficiency of enzymatic reactions of phosphorilation, enzyme activation and function. We hypothesized that lipid bodies - inducible non-membrane bound cytoplasmic lipid domains - function as specialized intracellular sites of compartmentalization of signaling with major roles in lipid mediator formation within leukocytes engaged in inflammatory process. Over the past years substantial progresses have been made demonstrating that all enzymes involved in eicosanoid synthesis localize at lipid bodies and lipid bodies are distinct sites for eicosanoid generation. Here we will review our current knowledge on the mechanisms of formation and functions of lipid bodies pertinent to inflammation.
Resumo:
Mutations of GPCRs can increase their constitutive (agonist-independent) activity. Some of these mutations have been artificially introduced by site-directed mutagenesis; others occur spontaneously in human diseases. The analysis of constitutively active GPCR mutants has attracted a large interest in the past decade, providing an important contribution to our understanding of the molecular mechanisms underlying receptor function and drug action.
Resumo:
Abstract : Host-Cell Factor 1 (HCF-1) was first discovered in the study of the herpes simplex virus (HSV) infection. HCF-1 is one of the two cellular proteins that compose the VP16-induced complex, a key activator of HSV lytic infection. lncleed, when HSV infects human cells, it is able to enter two modes of infection: lytic or latent. The V`P16-induced complex promotes the lytic mode and in so doing the virus targets important cellular regulatory proteins, such as HCF-1, to manipulate the status of the infected cell. Indeed, HCF-1 regulates human cell proliferation and the cell cycle at different steps. In human, HCF-1 is unusual in that it undergoes a process of proteolytic maturation that results from cleavages at six centrally located 26 amino acid repeats called HCF-1pro repeats. This generates a heterodimeric complex of stably associated amino- (HCF-1n) and carboxy- (HCF-1c) terminal subunits. The absence of the HCF-1 N or HCF-1; subunit leads predominantly to either G1 or M phase defects, respectively. We have hypothesized that HCF-1 forms a heterodimeric complex to permit communication between the two subunits of HCF-1 involved in regulating different phases of the cell cycle. Indeed, there is evidence for such inter-subunit communication because a point mutation called P134S in the HCF-1N subunit in the temperature-sensitive hamster cell line tsBN67 causes, addition to G1- phase defects associated with the HCF-1n subunit, M-phase defects similar to the defects seen upon loss of HCF-1 function. Furthermore, inhibition of the proteolytic maturation of HCF-1 by deletion of the six HCF-1pro repeats (HCF-1Aimo) also leads to M-phase defects, specifically cytokinesis defects leading to binucleation, indicating that there is loss of HCF-15 function in the absence of HCF-1 maturation. I demonstrate that individual point mutations in each of the six HCF-1pro repeats that prevent HCF-1 proteolytic maturation also lead to binucleation; however, this defect can be latgely rescued by the presence of just one HCF-1pRO sequence in I-ICF»1. These results argue that processing itself is important for the HCF-1g function. In fact, until now, the hypothesis was that the proteolytic processing per se is more important for HCF-1C function than the proteolytic processing region. But I show that processing per se is not sufticient to rescue multinucleation, but that the HCF-lpm sequence itself is crucial. This discovery leads to the conclusion that the I-ICF-1pRO repeats have an additional function important for HCF-le function. From the studies of others, one potential function of the HCF-lrxo tepeats is as a binding site for O-link NAcetyl glycosamine tansferase (OGT) to glycosylate an HCF-1n-sunbunit region called the Basic region. This new function suggests the Basic region of HCF-1n is also implicated in the communication between the two subunits. This inter-subunit communication was analyzed in more detail with the studies of the Pl34S mutation and the residues 382-450 region of HCF-l that when removed prevents HCF-l subunit association. I demonstrate that the point mutation also leads to a binucleation defect in Hela cells as well as in the tsBN67 cells. In addition, the effect of this mutation on the regulation of HCF-1c activity seems to interfere with that of the HCF-lpgg repeats because the sum of the deletion of the proteolytic processing region and the point mutation surprisingly leads to re-establishment of correct cytokinesis. The study of the 382-450 HCF-lN region also yielded surprising results. This region important for the association of the two subunits is also important for both HCF-1c function in M phase and G1 phase progression. Thus, I have discovered two main functions of this region: its role in the regulation of HCF-lc function in M phase and its involvement in the regulation of G1/S phase ?- an HCF-1n function. These results support the importance of inter-subunit communication in HCF-1 functions. My research illuminates the understanding of the interaction of the two subunits by showing that the whole HCF-1n subunit is involved in the inter-subunit communication in order to regulate HCF-1c function. For this work, I was concentrated on the study of cytokinesis; the first phenotype showing the role of HCF-1c in the M phase. Then, I extended the study of the M phase with analysis of steps earlier to cytokinesis. Because some defects in the chromosome segregation was already described in the absence of HCF-1, I decided to continue the study of M phase by checking effects on the chromosome segregation. I showed that the HCF-1n subunit and HCF-1pro repeats are both important for this key step of M phase. I show that the binucleation phenotype resulting from deletion or mutation in HCF-1pro repeats, Pl34S point mutation or the lack of the region 382-450 are correlated with micronuclei, and chromosome segregation and alignment defects. This suggests that HCF«lç already regulates M phase during an early step and could be involved in the complex regulation of chromosome segregation. Because one of the major roles of HCF-1 is to be a transcription regulator, I also checked the capacity of HCF-1 to bind to the chromatin in my different cell lines. All my recombinant proteins can bind the chromatin, except for, as previously described, the HCF-1 with the P134S point mutation, This suggests that the binding of HCF-1 to the chromatin is not dependant to the Basic and proteolytic regions but more to the Kelch domain. Thus, if the function of HCF-ig in M phase is dependant to its chromatin association, the intercommunication and the proteolytic region are not involved in the ability to bind to the chromatin but more to bind to the right place of the chromatin or to be associated with the co-factors. Résumé : L'étude de l'infection par le virus Herpes Simplex (HSV) a permis la découverte de la protéine HCF-1 (Host-Cell Factor). HCF-1 est une des protéines cellulaires qui font partie du complexe induit par VP16 ; ce complexe est la clef pour l'activation de la phase lytique de HSV. Afin de manipuler les cellules infectées, le complexe induit pas le VPIG devrait donc cibler les protéines importantes pour la régulation cellulaire, telles que la protéine HCF-1. Cette dernière s'avère donc être un senseur pour la cellule et devrait également jouer un rôle de régulation lors des différentes phases du cycle cellulaire. Chez l'humain, HCF-1 a la particularité de devoir passer par une phase de maturation pour devenir active. Lors de cette maturation, la protéine subit une coupure protéolytique au niveau de six répétitions composées de 26 acides aminés, appelé HCF-1pro repeats. Cette coupure engendre la formation d'un complexe formé de deux sous-unités, HCF-1n et HCF-1c, associées l'une à l'autre de façon stable. Enlever la sous-unité HCF-IN ou C entraîne respectivement des défauts dans la phase G1 et M. Nous pensons donc que HCF-1 forme un complexe hétérodimérique afin de permettre la communication entre les molécules impliquées dans la régulation des différentes phases du cycle cellulaire. Cette hypothèse est déduite suite à deux études: l'une réalisée sur la lignée cellulaire tsBN67 et l'autre portant sur l'inhibition de la maturation protéolytique. La lignée cellulaire tsBN67, sensible à la température, porte la mutation Pl 345 dans la sous-unité HCF-1n. Cette mutation, en plus d'occasionner des défauts dans la phase G1 (défauts liés à la sous-unité HCF-1N), a aussi pour conséquence d'entrainer des défauts dans la phase M, défauts similaires à ceux dus a la perte de la sous-unité HCF-1c. Quant à la maturation protéolytique, l'absence de la région de la protéolyse provoque la binucléation, défaut lié à la cytokinèse, indiquant la perte de la fonction de la sous-unité HCF-1c. Au cours de ma thèse, j'ai démontré que des mutations dans les HCF-1=no repeats, qui bloquent la protéolyse, engendrent la binucléation ; cependant ce défaut peut être corrigé pas l'ajout d'un HCF-1pro repeat dans un HCF-1 ne contenant pas la région protéolytique. Ces résultats soutiennent l'idée que la région protéolytique est importante pour le bon fonctionnement de HCF-1c. En réalité jusqu'a maintenant on supposait que le mécanisme de coupure était plus important que la région impliquée pour la régulation de la fonction de HCF-1;. Mais mon étude montre que la protéolyse n'est pas suffisante pour éviter la binucléation ; en effet, les HCF-1pro repeats semblent jouer le rôle essentiel dans le cycle cellulaire. Cette découverte conduit à la conclusion que les HCF-1pro repeats ont sûrement une fonction autre qui serait cruciale pour la foncton de HCF-1c. Une des fonctions possibles est d'être le site de liaison de l'O-linked N-acetylglucosamine transférase (OGT) qui glycosylerait la région Basique de HCF-1n. Cette nouvelle fonction suggère que la région Basique est aussi impliquée dans la communication entre les deux sous- unités. L'intercommunication entre les deux sous-unités ai été d'ailleurs analysée plus en détail dans mon travail à travers l'étude de la mutation Pl34S et de la région 382-450, essentielle pour l'association des deux sous»unités. J'ai ainsi démontré que la mutation P134S entraînait aussi des défauts dans la cytokinése dans la lignée cellulaire Hela, de plus, son influence sur HCF-1c semble interférer avec celle de la région protéolytique. En effet, la superposition de ces deux modifications dans HCF-1 conduit au rétablissement d'une cytokinése correcte. Concernant la région 382 à 450, les résultats ont été assez surprenants, la perte de cette région provoque l'arrêt du cycle en G1 et la binucléation, ce qui tend à prouver son importance pour le bon fonctionnement de HCF-1n et de HCF-1c. Cette découverte appuie par conséquent l'hypotl1èse d'une intercommunicatzion entre les deux sous-unités mettant en jeu les différentes régions de HCF-1n. Grâce à mes recherches, j'ai pu améliorer la compréhension de l'interaction des deux sous-unités de HCF-1 en montrant que toutes les régions de HCF-1n sont engagées dans un processus d'intercommunication, dont le but est de réguler l'action de HCF-1c. J'ai également mis en évidence une nouvelle étape de la maturation de HCF-1 qui représente une phase importante pour l'activation de la fonction de HCF-1c. Afin de mettre à jour cette découverte, je me suis concentrée sur l'étude de l'impact de ces régions au niveau de la cytokinése qui fut le premier phénotype démontrant le rôle de HCF-1c dans la phase M. A ce jour, nous savons que HCF-1c joue un rôle dans la cytokinèse, nous ne connaissons pas encore sa fonction précise. Dans le but de cerner plus précisément cette fonction, j'ai investigué des étapes ultérieures ai la cytokinèse. Des défauts dans la ségrégation des chromosomes avaient déjà été observés, ai donc continué l'étude en prouvant que HCF-1n et les HCF-1pro repeats sont aussi importants pour le bon fonctionnement de cette étape clef également régulée par HCF-1c. J' ai aussi montré que la région 382-450 et la mutation P134S sont associées à un taux élevé de micronoyaux, de défauts dans la ségrégation des chromosomes. L'une des fonctions principales de HCF-1 étant la régulation de la transcription, j'ai aussi contrôlé la capacité de HCF-1 à se lier à la chromatine après insertion de mutations ou délétions dans HCF-1n et dans la région protéolytique. Or, à l'exception des HCF-1 contenant la mutation P134S, la sous-unité HCF-1c des HCF-1 tronquées se lie correctement à la chromatine. Cette constatation suggère que la liaison entre HCF-1c et chromatine n'est pas dépendante de la région Basique ou Protéolytique mais peut-être vraisemblablement de la région Kelch. Donc si le rôle de HCF-1c est dépendant de sa capacité â activer la transcription, l'intercommunication entre les deux sous-unités et la région protéolytique joueraient un rôle important non pas dans son habileté à se lier à la chromatine, mais dans la capacité de HCF-1 à s'associer aux co-facteurs ou à se placer sur les bonnes régions du génome.
Resumo:
SUMMARY : The traditional medical advice for pregnant women has been to reduce their physical activity (PA) levels. The advice was based on concerns that exercise could affect pregnancy outcomes by increasing core body temperature, by increasing the risk of maternal musculoskeletal injury and by altering the transplacental transport of oxygen and nutrients to maternal skeletal muscle rather than to the developing foetus. In the meantime, several studies have provided new information on adaptation of the pregnant woman and her foetus to moderate PA. New investigations have shown no adverse maternal or neonatal outcomes, abnormal foetal growth, increase in early pregnancy loss, or late pregnancy complications. Moreover, enrolment in moderate PA has proven to result in marked health benefits including improved maternal cardiovascular function, reduction of excessive weight gain and fat retention, less complicated labour, improved foetal stress tolerance and neurobehavioral maturation. In view of the beneficial effects, current recommendations encourage healthy pregnant women to engage in 30 minutes of moderate PA on most, if not all, days of the week. This thesis work addressed several questions. Firstly, it examined whether compliance with the recommended levels of PA during pregnancy results in better preparedness for the sudden physical exertion of labour and delivery. Secondly, it measured PA during pregnancy as compared to postpartum. Lastly, it assessed the influence of pre-pregnancy body mass index on gestational resting metabolic rate. Data collection was conducted on healthy women living in Switzerland during the third trimester of pregnancy and postpartum. Total and activity energy expenditure was assessed through 24-hour heart rate and accelerations recordings, and cardiovascular fitness through an individual step-test. Information related to pregnancy, labour and delivery was collected from medical records. The results indicate that a minimum 30 min of moderate PA per day during pregnancy are associated with better cardiovascular fitness and lower risk of operative delivery with no negative effects on maternal and foetal conditions (study 1). Despite these benefits, a substantial proportion of pregnant women (39%) living in Switzerland do not meet the PA recommendations. The decrease in activity related energy expenditure during pregnancy compared to postpartum was measured to be around 100 kcal/day (~13%), whereas the total energy expenditure was found to increase by 300 kcal/day (study 2). Thus, the energy cost of late pregnancy in Switzerland corresponds to 200 kca/day. These findings are based on average values of the study group. It should be noted, however, that large variations in individual energy expenditure may occur depending on the pre-pregnancy body mass index (study 3). When adjusted to body weight, gestational resting metabolic rate is significantly lower among women of high pre-pregnancy body mass index compared to women of normal or low pre-pregnancy body mass index. This can be explained by the fact that resting metabolic rate is primarily a function of fat-free mass, and when expressed per kg body weight, it decreases as the percentage of body fat increases. If energy intake is not modified appropriately in order to match lower energy cost per kg body weight in overweight and obese women it will result in positive energy balance, thus contributing to the current trend towards increasing adiposity in affluent society. The results of these studies go beyond the current state of knowledge on PA and pregnancy (study 4) and provide valid evidence to guide clinical practice. In view of the current epidemic of sedentary behaviour and obesity related pathology, the findings contribute new and reliable information to public health policies regarding the effects of PA in pregnancy, an important period of life for both mother and infant.
Resumo:
A hydrophobic cuticle is deposited at the outermost extracellular matrix of the epidermis in primary tissues of terrestrial plants. Besides forming a protective shield against the environment, the cuticle is potentially involved in several developmental processes during plant growth. A high degree of variation in cuticle composition and structure exists between different plant species and tissues. Lots of progress has been made recently in understanding the different steps of biosynthesis, transport, and deposition of cuticular components. However, the molecular mechanisms that underlie cuticular function remain largely elusive.
Resumo:
Objectives: Failed back surgery syndrome (FBSS) patients experience pain, functional disability, and reduced health-related quality of life (HRQoL) despite anatomically successful surgery. Examining sub-dimensions of health outcomes measures provides insight into patient well-being. Materials and Methods: The international multicenter PROCESS trial collected detailed HRQoL (EuroQol-5D; Short-Form 36) and function (Oswestry Disability Index) information on 100 FBSS patients. Results: At baseline, patients reported moderate-to-severe leg and back pain adversely affecting all dimensions of function and HRQoL. Compared with conventional medical management alone, patients also receiving spinal cord stimulation (SCS) reported superior pain relief, function, and HRQoL at six months on overall and most sub-component scores. The majority of these improvements with SCS were sustained at 24 months. Nonetheless, 36-40% of patients experienced ongoing marked disability (standing, lifting) and HRQoL problems (pain/discomfort). Conclusions: Longer-term patient management and research must focus on these refractory FBSS patients with persisting poor function and HRQoL outcomes.
Resumo:
The activation, or maturation, of dendritic cells (DCs) is crucial for the initiation of adaptive T-cell mediated immune responses. Research on the molecular mechanisms implicated in DC maturation has focused primarily on inducible gene-expression events promoting the acquisition of new functions, such as cytokine production and enhanced T-cell-stimulatory capacity. In contrast, mechanisms that modulate DC function by inducing widespread gene-silencing remain poorly understood. Yet the termination of key functions is known to be critical for the function of activated DCs. Genome-wide analysis of activation-induced histone deacetylation, combined with genome-wide quantification of activation-induced silencing of nascent transcription, led us to identify a novel inducible transcriptional-repression pathway that makes major contributions to the DC-maturation process. This silencing response is a rapid primary event distinct from repression mechanisms known to operate at later stages of DC maturation. The repressed genes function in pivotal processes--including antigen-presentation, extracellular signal detection, intracellular signal transduction and lipid-mediator biosynthesis--underscoring the central contribution of the silencing mechanism to rapid reshaping of DC function. Interestingly, promoters of the repressed genes exhibit a surprisingly high frequency of PU.1-occupied sites, suggesting a novel role for this lineage-specific transcription factor in marking genes poised for inducible repression.
Resumo:
This paper provides a new and accessible approach to establishing certain results concerning the discounted penalty function. The direct approach consists of two steps. In the first step, closed-form expressions are obtained in the special case in which the claim amount distribution is a combination of exponential distributions. A rational function is useful in this context. For the second step, one observes that the family of combinations of exponential distributions is dense. Hence, it suffices to reformulate the results of the first step to obtain general results. The surplus process has downward and upward jumps, modeled by two independent compound Poisson processes. If the distribution of the upward jumps is exponential, a series of new results can be obtained with ease. Subsequently, certain results of Gerber and Shiu [H. U. Gerber and E. S. W. Shiu, North American Actuarial Journal 2(1): 48–78 (1998)] can be reproduced. The two-step approach is also applied when an independent Wiener process is added to the surplus process. Certain results are related to Zhang et al. [Z. Zhang, H. Yang, and S. Li, Journal of Computational and Applied Mathematics 233: 1773–1 784 (2010)], which uses different methods.
Resumo:
The aim of the present study was to assess the possible use of a modified medium, prepared in the laboratory using the constituents of Barbour-Stonner-Kelly (BSK) medium and medium 199 as base, for the culture of Borrelia strains, comparing the growth of individual strains in this medium and in the BSK-H medium, and the protein profile and antigenic characteristics of Borrelia proteins expressed in these media. A qualitative evaluation of growth of Borrelia species was made with acceptable results (morphology and motility), but during a quantitative evaluation using the three main genospecies of Borrelia, the better results were obtained with a B. burgdorferi sensu stricto strain. The modified medium did not enable the growth of a B. afzelii strain. The protein profile and antigenic characteristic of the expressed proteins in the modified medium were studied with satisfactory results. These results suggest the modified medium as an alternative for the cultivation of Borrelia strains, with some limitations, in poorly-resourced laboratories.
Resumo:
Na,K-ATPase, the main active transport system for monovalent cations in animal cells, is responsible for maintaining Na(+) and K(+) gradients across the plasma membrane. During its transport cycle it binds three cytoplasmic Na(+) ions and releases them on the extracellular side of the membrane, and then binds two extracellular K(+) ions and releases them into the cytoplasm. The fourth, fifth, and sixth transmembrane helices of the alpha subunit of Na,K-ATPase are known to be involved in Na(+) and K(+) binding sites, but the gating mechanisms that control the access of these ions to their binding sites are not yet fully understood. We have focused on the second extracellular loop linking transmembrane segments 3 and 4 and attempted to determine its role in gating. We replaced 13 residues of this loop in the rat alpha1 subunit, from E314 to G326, by cysteine, and then studied the function of these mutants using electrophysiological techniques. We analyzed the results using a structural model obtained by homology with SERCA, and ab initio calculations for the second extracellular loop. Four mutants were markedly modified by the sulfhydryl reagent MTSET, and we investigated them in detail. The substituted cysteines were more readily accessible to MTSET in the E1 conformation for the Y315C, W317C, and I322C mutants. Mutations or derivatization of the substituted cysteines in the second extracellular loop resulted in major increases in the apparent affinity for extracellular K(+), and this was associated with a reduction in the maximum activity. The changes produced by the E314C mutation were reversed by MTSET treatment. In the W317C and I322C mutants, MTSET also induced a moderate shift of the E1/E2 equilibrium towards the E1(Na) conformation under Na/Na exchange conditions. These findings indicate that the second extracellular loop must be functionally linked to the gating mechanism that controls the access of K(+) to its binding site.
Resumo:
Intravenous administration of polyclonal and monoclonal antibodies has proven to be a clinically valid approach in the treatment, or at least relief, of many acute and chronic pathologies, such as infection, immunodeficiency, and a broad range of autoimmune conditions. Plasma-derived IgG or recombinant IgG are most frequently used for intravenous or subcutaneous administration, whereas a few IgM-based products are available as well. We have established recently that secretory-like IgA and IgM can be produced upon association of plasma-derived polymeric IgA and IgM with a recombinant secretory component. As a next step toward potential future mucosal administration, we sought to unravel the mechanisms by which these secretory Igs protect epithelial cells located at the interface between the environment and the inside of the body. By using polarized epithelial Caco-2 cell monolayers and Shigella flexneri as a model enteropathogen, we found that polyspecific plasma-derived SIgA and SIgM fulfill many protective functions, including dose-dependent recognition of the antigen via formation of aggregated immune complexes, reduction of bacterial infectivity, maintenance of epithelial cell integrity, and inhibition of proinflammatory cytokine/chemokine production by epithelial cells. In this in vitro model devoid of other cellular or molecular interfering partners, IgM and secretory IgM showed stronger bacterial neutralization than secretory IgA. Together, these data suggest that mucosally delivered antibody preparations may be most effective when combining both secretory-like IgA and IgM, which, together, play a crucial role in preserving several levels of epithelial cell integrity.
Resumo:
The expression of the Bacillus subtilis W23 tar genes specifying the biosynthesis of the major wall teichoic acid, the poly(ribitol phosphate), was studied under phosphate limitation using lacZ reporter fusions. Three different regulation patterns can be deduced from these beta-galactosidase activity data: (i) tarD and tarL gene expression is downregulated under phosphate starvation; (ii) tarA and, to a minor extent, tarB expression after an initial decrease unexpectedly increases; and (iii) tarO is not influenced by phosphate concentration. To dissect the tarA regulatory pattern, its two promoters were analysed under phosphate limitation: The P(tarA)-ext promoter is repressed under phosphate starvation by the PhoPR two-component system, whereas, under the same conditions, the P(tarA)-int promoter is upregulated by the action of an extracytoplasmic function (ECF) sigma factor, sigma(M). In contrast to strain 168, sigma(M) is activated in strain W23 in phosphate-depleted conditions, a phenomenon indirectly dependent on PhoPR, the two-component regulatory system responsible for the adaptation to phosphate starvation. These results provide further evidence for the role of sigma(M) in cell-wall stress response, and suggest that impairment of cell-wall structure is the signal activating this ECF sigma factor.
Resumo:
Attenuated poxviruses are safe and capable of expressing foreign antigens. Poxviruses are applied in veterinary vaccination and explored as candidate vaccines for humans. However, poxviruses express multiple genes encoding proteins that interfere with components of the innate and adaptive immune response. This manuscript describes two strategies aimed to improve the immunogenicity of the highly attenuated, host-range restricted poxvirus NYVAC: deletion of the viral gene encoding type-I interferon-binding protein and development of attenuated replication-competent NYVAC. We evaluated these newly generated NYVAC mutants, encoding HIV-1 env, gag, pol and nef, for their ability to stimulate HIV-specific CD8 T-cell responses in vitro from blood mononuclear cells of HIV-infected subjects. The new vectors were evaluated and compared to the parental NYVAC vector in dendritic cells (DCs), RNA expression arrays, HIV gag expression and cross-presentation assays in vitro. Deletion of type-I interferon-binding protein enhanced expression of interferon and interferon-induced genes in DCs, and increased maturation of infected DCs. Restoration of replication competence induced activation of pathways involving antigen processing and presentation. Also, replication-competent NYVAC showed increased Gag expression in infected cells, permitting enhanced cross-presentation to HIV-specific CD8 T cells and proliferation of HIV-specific memory CD8 T-cells in vitro. The recombinant NYVAC combining both modifications induced interferon-induced genes and genes involved in antigen processing and presentation, as well as increased Gag expression. This combined replication-competent NYVAC is a promising candidate for the next generation of HIV vaccines.
Resumo:
In the parallel map theory, the hippocampus encodes space with 2 mapping systems. The bearing map is constructed primarily in the dentate gyrus from directional cues such as stimulus gradients. The sketch map is constructed within the hippocampus proper from positional cues. The integrated map emerges when data from the bearing and sketch maps are combined. Because the component maps work in parallel, the impairment of one can reveal residual learning by the other. Such parallel function may explain paradoxes of spatial learning, such as learning after partial hippocampal lesions, taxonomic and sex differences in spatial learning, and the function of hippocampal neurogenesis. By integrating evidence from physiology to phylogeny, the parallel map theory offers a unified explanation for hippocampal function.