977 resultados para Models, Molecular
Resumo:
Canine parasitic zoonoses pose a continuing public health problem, especially in developing countries and communities that are socioeconomically disadvantaged. Our study combined the use of conventional and molecular epidemic, logical tools to determine the role of dogs in transmission of gastrointestinal (GI) parasites such as hookworms, Giardia and Ascaris in a parasite endemic teagrowing community in northeast India. A highly sensitive and specific molecular tool was developed to detect and differentiate the zoonotic species of canine hookworm eggs directly from faeces. This allowed epidemiological screening of canine hookworm species in this community to be conducted with ease and accuracy. The zoonotic potential of canine Giardia was also investigated by characterising Giardia duodenalis recovered from humans and dogs living in the same locality and households at three different loci. Phylogenetic and epidemiological analysis provided compelling evidence to support the zoonotic transmission of canine Giardia. Molecular tools were also used to identify the species of Ascaris egg present in over 30% of dog faecal samples. The results demonstrated the role of dogs as a significant disseminator and environmental contaminator of Ascaris lumbricoides in communities where promiscuous defecation practices exist. Our study demonstrated the usefulness of combining conventional and molecular parasitological and epidemiological tools to help solve unresolved relationships with regards to parasitic zoonoses.
Resumo:
Diverse self-incompatibility (SI) mechanisms permit flowering plants to inhibit fertilization by pollen that express specificities in common with the pistil. Characteristic of at least two model systems is greatly reduced recombination across large genomic tracts surrounding the S-locus, which regulates SI. In three angiosperm families, including the Solanaceae, the gene that controls the expression of gametophytic SI in the pistil encodes a ribonuclease (S-RNase). The gene that controls pollen SI expression is currently unknown, although several candidates have recently been proposed. Although each candidate shows a high level of polymorphism and complete allelic disequilibrium with the S-RNase gene, such properties may merely reflect tight linkage to the S-locus, irrespective of any functional role in SI. We analyzed the magnitude and nature of nucleotide variation, with the objective of distinguishing likely candidates for regulators of SI from other genes embedded in the S-locus region. We studied the S-RNase gene of the Solanaceae and 48A, a candidate for the pollen gene in this system, and we also conducted a parallel analysis of the regulators of sporophytic SI in Brassica, a system in which both the pistil and pollen genes are known. Although the pattern of variation shown by the pollen gene of the Brassica system is consistent with its role as a determinant of pollen specificity, that of 48A departs from expectation. Our analysis further suggests that recombination between 48A and S-RNase may have occurred during the interval spanned by the gene genealogy, another indication that 48A may not regulate SI expression in pollen.
Resumo:
The circumscription of Oxylobium and related genera has been problematic for nearly 200 years. Traditional definitions of genera in the group have relied on morphological features of the leaves, flower, and fruit that overlap extensively between genera. Therefore sequences of cpDNA (trnL-F intron and spacer) and nrDNA (ITS) were used to estimate the phylogeny of the group in an attempt to redefine the genera as monophyletic groups. Oxylobium sens. str. was found to be a well supported clade in both data sets, with the inclusion of Mirbelia oxylobioides. No other genus in the group was supported by these data, except Gastrolobium sens. lat. Some species groups within Chorizema, Mirbelia, and Podolobium were supported but relationships among these, Oxylobium and Gastrolobium differed significantly between the chloroplast and nuclear data sets. No group supported by the molecular data had a morphological synapomorphy, not even Oxylobium or Gastrolobium. Therefore it may be necessary to adopt a much broader generic concept in this group than has been done previously. Incongruence between the two molecular data sets, and very short internal basal branches in both, suggest a rapid early radiation in this group, possibly combined with hybridization and lineage sorting.
Resumo:
Giardia duodenalis isolates recovered from humans and clogs living in the same locality in a remote tea-growing community of northeast India were characterized at 3 different loci; the SSU-rDNA, elongation factor 1-alpha (ef1-alpha) and triose phosphate isomerase (tpi) gene. Phylogenetic analysis of the SSU-rDNA and ef1-alpha genes provided poor genetic resolution of the isolates within various assemblages, stressing the importance of using multiple loci when inferring genotypes to Giardia. Analysis of the tpi gene provided better genetic resolution and placed canine Giardia isolates within the genetic groupings of human isolates (Assemblages A and B). Further evidence for zoonotic transmission was supported by epidemiological data showing a highly significant association between the prevalence of Giardia in humans and presence of it Giardia-positive dog in the same household (odds ratio 3.01, 95%) CI, 1.11, 8.39, P = 0.0000).
Resumo:
Many models exist in the literature to explain the success of technological innovation. However, no studies have been made regarding graphic formats representing the technological innovation models and their impact, or on the understanding of these models by non-specialists in technology management. Thus, the main objective of this paper is to propose a new graphic configuration to represent the technological innovation management. Based on the literature, the innovation model is presented in the traditional format. Next, the same model is designed in the graphic format - named `the see-saw of competitiveness` - showing the interfaces among the identified factors. The two graphic formats were compared by a group of graduate students in terms of the ease in understanding the conceptual model of innovation. The statistical analysis shows that the seesaw of competitiveness is preferred.
Resumo:
Quantifying mass and energy exchanges within tropical forests is essential for understanding their role in the global carbon budget and how they will respond to perturbations in climate. This study reviews ecosystem process models designed to predict the growth and productivity of temperate and tropical forest ecosystems. Temperate forest models were included because of the minimal number of tropical forest models. The review provides a multiscale assessment enabling potential users to select a model suited to the scale and type of information they require in tropical forests. Process models are reviewed in relation to their input and output parameters, minimum spatial and temporal units of operation, maximum spatial extent and time period of application for each organization level of modelling. Organizational levels included leaf-tree, plot-stand, regional and ecosystem levels, with model complexity decreasing as the time-step and spatial extent of model operation increases. All ecosystem models are simplified versions of reality and are typically aspatial. Remotely sensed data sets and derived products may be used to initialize, drive and validate ecosystem process models. At the simplest level, remotely sensed data are used to delimit location, extent and changes over time of vegetation communities. At a more advanced level, remotely sensed data products have been used to estimate key structural and biophysical properties associated with ecosystem processes in tropical and temperate forests. Combining ecological models and image data enables the development of carbon accounting systems that will contribute to understanding greenhouse gas budgets at biome and global scales.
Resumo:
Valuation of projects for the preservation of water resources provides important information to policy makers and funding institutions. Standard contingent valuation models rely on distributional assumptions to provide welfare measures. Deviations from assumed and actual distribution of benefits are important when designing policies in developing countries, where inequality is a concern. This article applies semiparametric methods to obtain estimates of the benefit from a project for the preservation of an important Brazilian river basin. These estimates lead to significant differences from those obtained using the standard parametric approach.
Resumo:
Exponential and sigmoidal functions have been suggested to describe the bulk density profiles of crusts. The present work aims to evaluate these conceptual models using high resolution X-radiography. Repacked seedbeds from two soil materials, air-dried or prewetted by capillary rise, were subjected to simulated rain, which resulted in three types of structural crusts, namely, slaking, infilling, and coalescing. Bulk density distributions with depth were generated using high-resolution (70 mum), calibrated X-ray images of slices from the resin-impregnated crusted seedbeds. The bulk density decreased progressively with depth, which supports the suggestion that a crust should be considered as a nonuniform layer. For the slaking and the coalescing crusts, the exponential function underestimated the strong change in bulk density across the morphologically defined transition between the crust and the underlying material; the sigmoidal function provided a better description. Neither of these crust models effectively described the shape of the bulk density profiles through the whole seedbed. Below the infilling and slaking crusts, bulk density increased linearly with depth as a result of slumping. In the coalescing crusted seedbed, the whole seedbed uniformly collapsed and most of the bulk density change within the crust could be ascribed to slumping (0.33 g cm(-3)) rather than to crusting (0.12 g cm(-3)). Finally, (i) X-radiography appears as a unique tool to generate high resolution bulk density profiles and (ii) in structural crusts, bulk density profiles could be modeled using the existing exponential and sigmoidal crusting models, provided a slumping model would be coupled.
Resumo:
Microbial xylanolytic enzymes have a promising biotechnological potential, and are extensively applied in industries. In this study, induction of xylanolytic activity was examined in Aspergillus phoenicis. Xylanase activity induced by xylan, xylose or beta-methylxyloside was predominantly extracellular (93-97%). Addition of 1% glucose to media supplemented with xylan or xylose repressed xylanase production. Glucose repression was alleviated by addition of cAMP or dibutyryl-cAMP. These physiological observations were supported by a Northern analysis using part of the xylanase gene ApXLN as a probe. Gene transcription was shown to be induced by xylan, xylose, and beta-methylxyloside, and was repressed by the addition of 1% glucose. Glucose repression was partially relieved by addition of cAMP or dibutyryl cAMP.
Resumo:
A generalised ladder operator is used to construct the conserved operators for any one-dimensional lattice model derived from the Yang-Baxter equation. As an example, the low order conserved operators for the XYh model are calculated explicitly.
Resumo:
The genus Macrobrachium Bate, 1868 is one of the best examples of widespread crustacean genera distributed globally throughout tropical and subtropical waters. Previous investigators have noted the systematic complexity of the group, and have suggested rearrangements within the family Palaemonidae. Our phylogenetic analysis of new mitochondrial DNA sequences of 58 species of Macrobrachium distributed mainly in America support the hypothesis of monophyly of this genus, if Cryphiops Dana, 1852 is accepted as a generic synonym. We concluded that the independent evolution of different types of life cycle (abbreviated larval development-ALD and extended larval development-ELD) must have occurred more than once in the history of the group. Similarly, we also concluded that the current type species of the genus, Macrobrachium americanum Bate, 1868, should not be considered valid, as previously proposed. The synonymy of two members of the `olfersi` species complex (M. birai Lobao, Melo&Fernandes, 1986 and M. holthuisi Genofre&Lobao, 1978) with M. olfersi (Wiegmann, 1836) was confirmed. Similar results were found in comparing M. petronioi Melo, Lobao&Fernandes, 1986 and M. potiuna (Muller, 1880), in which the genetic divergence placed M. petronioi within the level of intraspecific variation of M. potiuna. The taxonomic status of the genus Cryphiops, as well as theories on the origin of Macrobrachium, is also called into question.
Resumo:
The current taxonomy of two poorly known hermit crab species Pagurus forceps H. Milne Edwards, 1836 and Pagurus comptus White, 1847 from temperate Pacific and Atlantic coastlines of South America is based only on adult morphology. Past studies have questioned the separation of these two very similar species, which occur sympatrically. We included specimens morphologically assignable to P. forceps and P. comptus in a phylogenetic analysis, along with other selected anomuran decapods, based on 16S ribosomal gene sequences. Differences between samples putatively assigned to either P. forceps and P. comptus were moderate, with sequence similarity ranging from 98.2 to 99.4% for the fragments analyzed. Our comparison of mitochondrial DNA sequences (16S rRNA) revealed diagnostic differences between the two putative species, suggesting that P. forceps and P. comptus are indeed phylogenetically close but different species, with no genetic justification to support their synonymization. The polyphyly of Pagurus is not corroborated here among the represented Atlantic species, despite obviously complex relationships among the members of the genus.
Resumo:
The efficient expression and purification of an interfacially active peptide (mLac21) was achieved by using bioprocess-centered molecular design (BMD), wherein key bioprocess considerations are addressed during the initial molecular biology work. The 21 amino acid mLac21 peptide sequence is derived from the lac repressor protein and is shown to have high affinity for the oil-water interface, causing a substantial reduction in interfacial tension following adsorption. The DNA coding for the peptide sequence was cloned into a modified pET-31(b) vector to permit the expression of mLac21 as a fusion to ketosteroid isomerase (KSI). Rational iterative molecular design, taking into account the need for a scaleable bioprocess flowsheet, led to a simple and efficient bioprocess yielding mLac21 at 86% purity following ion exchange chromatography (and >98% following chromatographic polishing). This case study demonstrates that it is possible to produce acceptably pure peptide for potential commodity applications using common scaleable bioprocess unit operations. Moreover, it is shown that BMD is a powerful strategy that can be deployed to reduce bioseparation complexity. (C) 2004 Wiley Periodicals, Inc.
Resumo:
Models of population dynamics are commonly used to predict risks in ecology, particularly risks of population decline. There is often considerable uncertainty associated with these predictions. However, alternatives to predictions based on population models have not been assessed. We used simulation models of hypothetical species to generate the kinds of data that might typically be available to ecologists and then invited other researchers to predict risks of population declines using these data. The accuracy of the predictions was assessed by comparison with the forecasts of the original model. The researchers used either population models or subjective judgement to make their predictions. Predictions made using models were only slightly more accurate than subjective judgements of risk. However, predictions using models tended to be unbiased, while subjective judgements were biased towards over-estimation. Psychology literature suggests that the bias of subjective judgements is likely to vary somewhat unpredictably among people, depending on their stake in the outcome. This will make subjective predictions more uncertain and less transparent than those based on models. (C) 2004 Elsevier SAS. All rights reserved.