989 resultados para Modèle animal rat
Resumo:
The movements of the ricefield rats (Rattus argentiventer) near a trap-barrier system (TBS) were assessed in lowland flood-irrigated rice crops in West Java, Indonesia, to test the hypothesis that a TBS with a 'trap-crop' modifies the movements of rats within 200 m from the trap-crop. The home range use and locations of rat burrows were assessed using radiotelemetry at two sites, one with a TBS with trap-crop (Treatment site, the crop inside the fence was planted 3 weeks earlier than the surrounding crop) and the other with a TBS without trap-crop (Control site, the crop inside the fence was planted at the same time as the surrounding crop). Each TBS was a 50 x 50 m plastic fence with eight multiple-capture rat traps set at the base. More than 700 rats were caught in the TBS with trap-crop, whereas only 10 rats were caught in the TBS without trap-crop. The home range size of females was significantly smaller at the Treatment site (0.96 ha) than the Control site (2.99 ha), but there was no difference for males. Seventy-eight per cent of rats caught in the TBS and fitted with radiocollars had their daytime burrow locations within 200 m of the TBS. We could not determine if the rats caught in the TBS were residents or transients according to demographic parameters. Our results support the hypothesis that a TBS with a trap-crop protects the surrounding rice crop out to a distance of at least 200 m.
Resumo:
In the toothless (tl/tl) osteopetrotic rat, teeth form but fail to erupt. Treatment of tl/tl rats with colony-stimulating factor-1 (CSF-1) activates bone resorption by osteoclasts, permits tooth eruption, and up-regulates the immunoreactivity of bone marrow mononuclear cells to growth hormone receptor (GHr) and insulin-like growth factor (IGF)-I. This study examined the distribution of tartrate-resistant acid phosphatase (TRAP) and immunoreactivity for GHr and IGF-I in osteoclast-like cells located on the alveolar bone margin, adjacent to the lower first molar crown, in 14-day-old normal and tl/tl rats, following treatment with CSF-1. Osteoclast-like cells demonstrated a positive reaction for TRAP, GHr, and IGF-I in all groups. However, in tl/tl tissue, osteoclast-like cells were generally negative for GHr. There was no significant difference in the total number of TRAP, GHr, and IGF-I-positive osteoclast-like cells on the adjacent bone margin in normal, normal treated with CSF-1, and tl/tl rats. CSF-1 treatment of the tl/tl rat significantly increased the total number of osteoclast-like cells, which were positive for TRAP (p < 0.001), GHr (p < 0.05) and IGF-I (P < 0.01).
Resumo:
Proteins of the annexin family are believed to be involved in membrane-related processes, but their precise functions remain unclear. Here, we have made use of several experimental approaches, including pathological conditions, RNA interference and in vitro transport assays, to study the function of annexin II in the endocytic pathway. We find that annexin II is required for the biogenesis of multivesicular transport intermediates destined for late endosomes, by regulating budding from early endosomes-but not the membrane invagination process. Hence, the protein appears to be a necessary component of the machinery controlling endosomal membrane dynamics and multivesicular endosome biogenesis. We also find that annexin II interacts with cholesterol and that its subcellular distribution is modulated by the subcellular distribution of cholesterol, including in cells from patients with the cholesterol-storage disorder Niemann-Pick C. We conclude that annexin II forms cholesterol-containing platforms on early endosomal membranes, and that these platforms regulate the onset of the degradation pathway in animal cells.
Resumo:
Activated hepatic stellate cells have been implicated in the fibrogenic process associated with iron overload, both in animal models and in human hemochromatosis. Previous studies have evaluated the role of ferritin/ferritin receptor interactions in the activation of stellate cells and subsequent fibrogenesis; however, the role of transferrin in hepatic stellate cell biology is unknown. This study was designed to identify and characterize the stellate cell transferrin receptor and to evaluate the influence of transferrin on stellate cell activation. Identification and characterization of the stellate cell transferrin receptor was determined by competitive displacement assays. The effect of transferrin on stellate cell activation was assessed using western blot analysis for alpha-smooth muscle actin expression, [H-3]Thymidine incorporation, and real-time RT-PCR for procollagen 1(I) mRNA expression. A specific receptor for rat transferrin was observed on activated but not quiescent stellate cells. Transferrin significantly increased the expression of alpha-smooth muscle actin, but caused a decrease in proliferation. Transferrin induced a significant increase in procollagen alpha1(I) mRNA expression. In conclusion, this study has demonstrated for the first time a specific, high affinity receptor for rat transferrin on activated hepatic stellate cells, which via interaction with transferrin regulates stellate cell activation. This suggests that transferrin may be an important factor in the activation of hepatic stellate cells in conditions of iron overload.
Resumo:
The origin of intracellular Ca2+ concentration ([Ca2+](i)) transients stimulated by nicotinic ( nAChR) and muscarinic ( mAChR) receptor activation was investigated in fura-2-loaded neonatal rat intracardiac neurons. ACh evoked [Ca2+](i) increases that were reduced to similar to 60% of control in the presence of either atropine ( 1 muM) or mecamylamine ( 3 muM) and to < 20% in the presence of both antagonists. Removal of external Ca2+ reduced ACh-induced responses to 58% of control, which was unchanged in the presence of mecamylamine but reduced to 5% of control by atropine. The nAChR-induced [Ca2+](i) response was reduced to 50% by 10 μM ryanodine, whereas the mAChR-induced response was unaffected by ryanodine, suggesting that Ca2+ release from ryanodine-sensitive Ca2+ stores may only contribute to the nAChR-induced [Ca2+](i) responses. Perforated-patch whole cell recording at - 60 mV shows that the rise in [Ca2+](i) is concomitant with slow outward currents on mAChR activation and with rapid inward currents after nAChR activation. In conclusion, different signaling pathways mediate the rise in [Ca2+](i) and membrane currents evoked by ACh binding to nicotinic and muscarinic receptors in rat intracardiac neurons.
Resumo:
Chronic lead exposure induces hypertension in humans and animals, affecting endothelial function. However, studies concerning acute cardiovascular effects are lacking. We investigated the effects of acute administration of a high concentration of lead acetate (100 µΜ) on the pressor response to phenylephrine (PHE) in the tail vascular bed of male Wistar rats. Animals were anesthetized with sodium pentobarbital and heparinized. The tail artery was dissected and cannulated for drug infusion and mean perfusion pressure measurements. Endothelium and vascular smooth muscle relaxation were tested with acetylcholine (5 µg/100 µL) and sodium nitroprusside (0.1 µg/100 µL), respectively, in arteries precontracted with 0.1 µM PHE. Concentration-response curves to PHE (0.001-300 µg/100 µL) were constructed before and after perfusion for 1 h with 100 µΜ lead acetate. In the presence of endothelium (E+), lead acetate increased maximal response (Emax) (control: 364.4 ± 36, Pb2+: 480.0 ± 27 mmHg; P < 0.05) and the sensitivity (pD2; control: 1.98 ± 0.07, 2.38 ± 0.14 log mM) to PHE. In the absence of endothelium (E-) lead had no effect but increased baseline perfusion pressure (E+: 79.5 ± 2.4, E-: 118 ± 2.2 mmHg; P < 0.05). To investigate the underlying mechanisms, this protocol was repeated after treatment with 100 µM L-NAME, 10 µM indomethacin and 1 µM tempol in the presence of lead. Lead actions on Emax and pD2 were abolished in the presence of indomethacin, and partially abolished with L-NAME and tempol. Results suggest that acute lead administration affects the endothelium, releasing cyclooxygenase-derived vasoconstrictors and involving reactive oxygen species.
Resumo:
Lead (Pb2+) poisoning causes hypertension, but little is known regarding its acute effects on cardiac contractility. To evaluate these effects, force was measured in right ventricular strips that were contracting isometrically in 45 male Wistar rats (250-300 g) before and after the addition of increasing concentrations of lead acetate (3, 7, 10, 30, 70, 100, and 300 µM) to the bath. Changes in rate of stimulation (0.1-1.5 Hz), relative potentiation after pauses of 15, 30, and 60 s, effect of Ca2+ concentration (0.62, 1.25, and 2.5 mM), and the effect of isoproterenol (20 ng/mL) were determined before and after the addition of 100 µM Pb2+. Effects on contractile proteins were evaluated after caffeine treatment using tetanic stimulation (10 Hz) and measuring the activity of the myosin ATPase. Pb2+ produced concentration-dependent force reduction, significant at concentrations greater than 30 µM. The force developed in response to increasing rates of stimulation became smaller at 0.5 and 0.8 Hz. Relative potentiation increased after 100 µM Pb2+ treatment. Extracellular Ca2+ increment and isoproterenol administration increased force development but after 100 µM Pb2+ treatment the force was significantly reduced suggesting an effect of the metal on the sarcolemmal Ca2+ influx. Concentration of 100 µM Pb2+ also reduced the peak and plateau force of tetanic contractions and reduced the activity of the myosin ATPase. Results showed that acute Pb2+ administration, although not affecting the sarcoplasmic reticulum activity, produces a concentration-dependent negative inotropic effect and reduces myosin ATPase activity. Results suggest that acute lead administration reduced myocardial contractility by reducing sarcolemmal calcium influx and the myosin ATPase activity. These results also suggest that lead exposure is hazardous and has toxicological consequences affecting cardiac muscle.
Resumo:
Eucalyptol is an essential oil that relaxes bronchial and vascular smooth muscle although its direct actions on isolated myocardium have not been reported. We investigated a putative negative inotropic effect of the oil on left ventricular papillary muscles from male Wistar rats weighing 250 to 300 g, as well as its effects on isometric force, rate of force development, time parameters, post-rest potentiation, positive inotropic interventions produced by Ca2+ and isoproterenol, and on tetanic tension. The effects of 0.3 mM eucalyptol on myosin ATPase activity were also investigated. Eucalyptol (0.003 to 0.3 mM) reduced isometric tension, the rate of force development and time parameters. The oil reduced the force developed by steady-state contractions (50% at 0.3 mM) but did not alter sarcoplasmic reticulum function or post-rest contractions and produced a progressive increase in relative potentiation. Increased extracellular Ca2+ concentration (0.62 to 5 mM) and isoproterenol (20 nM) administration counteracted the negative inotropic effects of the oil. The activity of the contractile machinery evaluated by tetanic force development was reduced by 30 to 50% but myosin ATPase activity was not affected by eucalyptol (0.3 mM), supporting the idea of a reduction of sarcolemmal Ca2+ influx. The present results suggest that eucalyptol depresses force development, probably acting as a calcium channel blocker.
Resumo:
Myocardial contractility depends on several mechanisms such as coronary perfusion pressure (CPP) and flow as well as on a1-adrenoceptor stimulation. Both effects occur during the sympathetic stimulation mediated by norepinephrine. Norepinephrine increases force development in the heart and produces vasoconstriction increasing arterial pressure and, in turn, CPP. The contribution of each of these factors to the increase in myocardial performance needs to be clarified. Thus, in the present study we used two protocols: in the first we measured mean arterial pressure, left ventricular pressure and rate of rise of left ventricular pressure development in anesthetized rats (N = 10) submitted to phenylephrine (PE) stimulation before and after propranolol plus atropine treatment. These observations showed that in vivo a1-adrenergic stimulation increases left ventricular-developed pressure (P<0.05) together with arterial blood pressure (P<0.05). In the second protocol, we measured left ventricular isovolumic systolic pressure (ISP) and CPP in Langendorff constant flow-perfused hearts. The hearts (N = 7) were perfused with increasing flow rates under control conditions and PE or PE + nitroprusside (NP). Both CPP and ISP increased (P<0.01) as a function of flow. CPP changes were not affected by drug treatment but ISP increased (P<0.01). The largest ISP increase was obtained with PE + NP treatment (P<0.01). The results suggest that both mechanisms, i.e., direct stimulation of myocardial a1-adrenoceptors and increased flow, increased cardiac performance acting simultaneously and synergistically.
Resumo:
Isolated segments of the perfused rat tail artery display a high basal tone when compared to other isolated arteries such as the mesenteric and are suitable for the assay of vasopressor agents. However, the perfusion of this artery in the entire tail has not yet been used for functional studies. The main purpose of the present study was to identify some aspects of the vascular reactivity of the rat tail vascular bed and validate this method to measure vascular reactivity. The tail severed from the body was perfused with Krebs solution containing different Ca2+ concentrations at different flow rates. Rats were anesthetized with sodium pentobarbital (65 mg/kg) and heparinized (500 U). The tail artery was dissected near the tail insertion, cannulated and perfused with Krebs solution plus 30 µM EDTA at 36oC and 2.5 ml/min and the procedures were started after equilibration of the perfusion pressure. In the first group a dose-response curve to phenylephrine (PE) (0.5, 1, 2 and 5 µg, bolus injection) was obtained at different flow rates (1.5, 2.5 and 3.5 ml/min). The mean perfusion pressure increased with flow as well as PE vasopressor responses. In a second group the flow was changed (1.5, 2, 2.5, 3 and 3.5 ml/min) at different Ca2+ concentrations (0.62, 1.25, 2.5 and 3.75 mM) in the Krebs solution. Increasing Ca2+ concentrations did not alter the flow-pressure relationship. In the third group a similar protocol was performed but the rat tail vascular bed was perfused with Krebs solution containing PE (0.1 µg/ml). There was an enhancement of the effect of PE with increasing external Ca2+ and flow. PE vasopressor responses increased after endothelial damage with air and CHAPS, suggesting an endothelial modulation of the tone of the rat tail vascular bed. These experiments validate the perfusion of the rat tail vascular bed as a method to investigate vascular reactivity.
Resumo:
Bone weakening can occur due to the absence of load on the skeleton or even short periods of decreased physical activity. Therefore, musculoskeletal diseases that involve temporary immobilization by casts, inactivity or tension increases the risk of fractures. Physical activity is the most studied procedure both to prevent damage and to restore bone structure. The present study aimed at evaluating, by bone densitometry on rat femurs, the influence of hindlimb unloading and later running activity on treadmill or free movement. Sixty-four Wistar rats were used, aged 65 days with a mean corporal mass of 316.11g, randomly divided into eight experimental groups: group 1, the suspended control with seven animals under hindlimb unloading regimen for 28 days, then euthanized; groups 2 and 3, the trained suspended comprising of 7 and five animals, respectively, subjected to hindlimb unloading for 28 days, followed by treadmill exercise for 28 days (group 2) or 56 days (group 3), then euthanized; groups 4 and 5, designated free suspended, comprised of 7 animals each under hindlimb unloading regimen for 28 days followed by free activity in cages for 28 days (group 4) or 56 days (group 5), then euthanized; groups 6, 7 and 8, negative controls, each with 8 animals allowed to free activity in cages and euthanized at the ages of 93, 121 and 149 days, respectively. Bone mineral density (BMD) of the left femur was analyzed by bone densitometry. Unloading by tail-suspension decreased BMD while treadmill training and free activity in cages promoted its recovery in a similar way and over time.
Resumo:
Recently, regulating mechanisms of branching morphogenesis of fetal lung rat explants have been an essential tool for molecular research. The development of accurate and reliable segmentation techniques may be essential to improve research outcomes. This work presents an image processing method to measure the perimeter and area of lung branches on fetal rat explants. The algorithm starts by reducing the noise corrupting the image with a pre-processing stage. The outcome is input to a watershed operation that automatically segments the image into primitive regions. Then, an image pixel is selected within the lung explant epithelial, allowing a region growing between neighbouring watershed regions. This growing process is controlled by a statistical distribution of each region. When compared with manual segmentation, the results show the same tendency for lung development. High similarities were harder to obtain in the last two days of culture, due to the increased number of peripheral airway buds and complexity of lung architecture. However, using semiautomatic measurements, the standard deviation was lower and the results between independent researchers were more coherent
Resumo:
Background: Regulating mechanisms of branching morphogenesis of fetal lung rat explants have been an essential tool for molecular research. This work presents a new methodology to accurately quantify the epithelial, outer contour and peripheral airway buds of lung explants during cellular development from microscopic images. Methods: The outer contour was defined using an adaptive and multi-scale threshold algorithm whose level was automatically calculated based on an entropy maximization criterion. The inner lung epithelial was defined by a clustering procedure that groups small image regions according to the minimum description length principle and local statistical properties. Finally, the number of peripheral buds were counted as the skeleton branched ends from a skeletonized image of the lung inner epithelial. Results: The time for lung branching morphometric analysis was reduced in 98% in contrast to the manual method. Best results were obtained in the first two days of cellular development, with lesser standard deviations. Non-significant differences were found between the automatic and manual results in all culture days. Conclusions: The proposed method introduces a series of advantages related to its intuitive use and accuracy, making the technique suitable to images with different lightning characteristics and allowing a reliable comparison between different researchers.
Resumo:
Recently, regulating mechanisms of branching morphogenesis of fetal lung rat explants have been an essential tool for molecular research. The development of accurate and reliable segmentation techniques may be essential to improve research outcomes. This work presents an image processing method to measure the perimeter and area of lung branches on fetal rat explants. The algorithm starts by reducing the noise corrupting the image with a pre-processing stage. The outcome is input to a watershed operation that automatically segments the image into primitive regions. Then, an image pixel is selected within the lung explant epithelial, allowing a region growing between neighbouring watershed regions. This growing process is controlled by a statistical distribution of each region. When compared with manual segmentation, the results show the same tendency for lung development. High similarities were harder to obtain in the last two days of culture, due to the increased number of peripheral airway buds and complexity of lung architecture. However, using semiautomatic measurements, the standard deviation was lower and the results between independent researchers were more coherent.