977 resultados para Mixed training
Resumo:
This report presents presentations from representatives of 12 countries, key outcomes and recommendations for the future.
Resumo:
This report presents presentations from representatives of 12 countries, key outcomes and recommendations for the future.
Resumo:
Trawling experiments carried out by the United Nations Development Programme Project and the Uganda Department of Fisheries, strongly suggest that the trawling method of fishing, if introduced on Lake Victoria, would bring about a tremendous increase in fish production from the lake. It is recognised, however, that before trawling is introduced, its economic, social, technical, biological and manpower implications must be carefully analysed. I now propose to discuss the training aspects of a trawl fishery on Lake Victoria.
Resumo:
Perceptual learning improves perception through training. Perceptual learning improves with most stimulus types but fails when . certain stimulus types are mixed during training (roving). This result is surprising because classical supervised and unsupervised neural network models can cope easily with roving conditions. What makes humans so inferior compared to these models? As experimental and conceptual work has shown, human perceptual learning is neither supervised nor unsupervised but reward-based learning. Reward-based learning suffers from the so-called unsupervised bias, i.e., to prevent synaptic " drift" , the . average reward has to be exactly estimated. However, this is impossible when two or more stimulus types with different rewards are presented during training (and the reward is estimated by a running average). For this reason, we propose no learning occurs in roving conditions. However, roving hinders perceptual learning only for combinations of similar stimulus types but not for dissimilar ones. In this latter case, we propose that a critic can estimate the reward for each stimulus type separately. One implication of our analysis is that the critic cannot be located in the visual system. © 2011 Elsevier Ltd.
Resumo:
In standard Gaussian Process regression input locations are assumed to be noise free. We present a simple yet effective GP model for training on input points corrupted by i.i.d. Gaussian noise. To make computations tractable we use a local linear expansion about each input point. This allows the input noise to be recast as output noise proportional to the squared gradient of the GP posterior mean. The input noise variances are inferred from the data as extra hyperparameters. They are trained alongside other hyperparameters by the usual method of maximisation of the marginal likelihood. Training uses an iterative scheme, which alternates between optimising the hyperparameters and calculating the posterior gradient. Analytic predictive moments can then be found for Gaussian distributed test points. We compare our model to others over a range of different regression problems and show that it improves over current methods.
Resumo:
Portland cement has been widely used for stabilisation/solidification (S/S) treatment of contaminated soils. However, there is a dearth of literature on pH-dependent leaching of contaminants from cement-treated soils. This study investigates the leachability of Cu, Pb, Ni, Zn and total petroleum hydrocarbons (TPH) from a mixed contaminated soil. A sandy soil was spiked with 3000 mg/kg each of Cd, Cu, Pb, Ni and Zn, and 10,000 mg/kg of diesel, and treated with ordinary Portland cement (CEM I). Four different binder dosages, 5%, 10%, 15% and 20% (m/m) and different water contents ranging from 13%-19% dry weight were used in order to find a safe operating envelope for the treatment process. The pH-dependent leaching behaviour of the treated soil was monitored over an 84-day period using a 3-point acid neutralisation capacity (ANC) test. The monolithic leaching test was also conducted. Geotechnical properties such as unconfined compressive strength (UCS), hydraulic conductivity and porosity were assessed over time. The treated soils recorded lower leachate concentrations of Ni and Zn compared to the untreated soil at the same pH depending on binder dosage. The binder had problems with Pb stabilisation and TPH leachability was independent of pH and binder dosage. The hydraulic conductivity of the mixes was generally of the order, 10-8 m/sec, while the porosity ranged from 26%-44%. The results of selected performance properties are compared with regulatory limits and the range of operating variables that lead to acceptable performance described. © 2012 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences.
Resumo:
Vector Taylor Series (VTS) model based compensation is a powerful approach for noise robust speech recognition. An important extension to this approach is VTS adaptive training (VAT), which allows canonical models to be estimated on diverse noise-degraded training data. These canonical model can be estimated using EM-based approaches, allowing simple extensions to discriminative VAT (DVAT). However to ensure a diagonal corrupted speech covariance matrix the Jacobian (loading matrix) relating the noise and clean speech is diagonalised. In this work an approach for yielding optimal diagonal loading matrices based on minimising the expected KL-divergence between the diagonal loading matrix and "correct" distributions is proposed. The performance of DVAT using the standard and optimal diagonalisation was evaluated on both in-car collected data and the Aurora4 task. © 2012 IEEE.
Resumo:
Single molecule force spectroscopy is a technique that can be used to probe the interaction force between individual biomolecular species. We focus our attention on the tip and sample coupling chemistry, which is crucial to these experiments. We utilised a novel approach of mixed self-assembled monolayers of alkanethiols in conjunction with a heterobifunctional crosslinker. The effectiveness of the protocol is demonstrated by probing the biotin-avidin interaction. We measured unbinding forces comparable to previously reported values measured at similar loading rates. Specificity tests also demonstrated a significant decrease in recognition after blocking with free avidin.
Resumo:
In current methods for voice transformation and speech synthesis, the vocal tract filter is usually assumed to be excited by a flat amplitude spectrum. In this article, we present a method using a mixed source model defined as a mixture of the Liljencrants-Fant (LF) model and Gaussian noise. Using the LF model, the base approach used in this presented work is therefore close to a vocoder using exogenous input like ARX-based methods or the Glottal Spectral Separation (GSS) method. Such approaches are therefore dedicated to voice processing promising an improved naturalness compared to generic signal models. To estimate the Vocal Tract Filter (VTF), using spectral division like in GSS, we show that a glottal source model can be used with any envelope estimation method conversely to ARX approach where a least square AR solution is used. We therefore derive a VTF estimate which takes into account the amplitude spectra of both deterministic and random components of the glottal source. The proposed mixed source model is controlled by a small set of intuitive and independent parameters. The relevance of this voice production model is evaluated, through listening tests, in the context of resynthesis, HMM-based speech synthesis, breathiness modification and pitch transposition. © 2012 Elsevier B.V. All rights reserved.
Resumo:
A second harmonic suppression scheme allowing RoF links to support communications and passive UHF RFID is reviewed. Using RoF distributed antenna system techniques, the coverage and location accuracy of passive UHF RFID are significantly improved.
Resumo:
It is shown that a new mixed nonlinear/eddy viscosity LES model reproduces profiles better than a number of competing nonlinear and mixed models for plane channel flow. The objective is an LES method that produces a fully resolved turbulent boundary layer and could be applied to a variety of aerospace problems that are currently studied with RANS, RANS-LES, or DES methods that lack a true turbulent boundary layer. There are two components to the new model. One an eddy viscosity based upon the advected subgrid scale energy and a relatively small coefficient. Second, filtered nonlinear terms based upon the Leray regularization. Coefficients for the eddy viscosity and nonlinear terms come from LES tests in decaying, isotropic turbulence. Using these coefficients, the velocity profile matches measurements data at Reτ ≈ 1000 exactly. Profiles of the components of kinetic energy have the same shape as in the experiment, but the magnitudes differ by about 25%. None of the competing LES gets the shape correct. This method does not require extra operations at the transition between the boundary layer and the interior flow.
Resumo:
A recent trend in spoken dialogue research is the use of reinforcement learning to train dialogue systems in a simulated environment. Past researchers have shown that the types of errors that are simulated can have a significant effect on simulated dialogue performance. Since modern systems typically receive an N-best list of possible user utterances, it is important to be able to simulate a full N-best list of hypotheses. This paper presents a new method for simulating such errors based on logistic regression, as well as a new method for simulating the structure of N-best lists of semantics and their probabilities, based on the Dirichlet distribution. Off-line evaluations show that the new Dirichlet model results in a much closer match to the receiver operating characteristics (ROC) of the live data. Experiments also show that the logistic model gives confusions that are closer to the type of confusions observed in live situations. The hope is that these new error models will be able to improve the resulting performance of trained dialogue systems. © 2012 IEEE.