974 resultados para Minor planets
Resumo:
As a problem in molecular recognition and for drug discovery, great interest has developed around the possibility that RNA structures could be discriminated by peptides and other small molecules. Although small peptides have been shown to have the capacity to discriminate specific bulges and loops in RNA molecules, discrimination of double helical regions by a peptide binder has not been reported. Indeed, the most accessible part of an RNA helix is the minor groove, and fundamental stereochemical considerations have suggested that discrimination of at least some base pairs would be difficult in the minor groove. Here we report the design and isolation of a peptide binder that manifests the most subtle kind of discrimination of base pair differences in the RNA minor groove. Functional discrimination of a single atomic group is demonstrated as well as the difference between two different angular orientations of the same group. This report of RNA helix discrimination by a peptide binder suggests a richer potential for RNA minor groove recognition than previously thought.
Resumo:
Insulin-dependent diabetes mellitus is an autoimmune disease, under polygenic control, manifested only when >90% of the insulin-producing β cells are destroyed. Although the disease is T cell mediated, the demise of the β cell results from a number of different insults from the immune system. It has been proposed that foremost amongst these effector mechanisms is CD95 ligand-induced β cell death. Using the nonobese diabetic lpr mouse as a model system, we have found, to the contrary, that CD95 plays only a minor role in the death of β cells. Islet grafts from nonobese diabetic mice that carry the lpr mutation and therefore lack CD95 were protected only marginally from immune attack when grafted into diabetic mice. An explanation to reconcile these differing results is provided.
Resumo:
Phenylamidine cationic groups linked by a furan ring (furamidine) and related compounds bind as monomers to AT sequences of DNA. An unsymmetric derivative (DB293) with one of the phenyl rings of furamidine replaced with a benzimidazole has been found by quantitative footprinting analyses to bind to GC-containing sites on DNA more strongly than to pure AT sequences. NMR structural analysis and surface plasmon resonance binding results clearly demonstrate that DB293 binds in the minor groove at specific GC-containing sequences of DNA in a highly cooperative manner as a stacked dimer. Neither the symmetric bisphenyl nor bisbenzimidazole analogs of DB293 bind significantly to the GC containing sequences. DB293 provides a paradigm for design of compounds for specific recognition of mixed DNA sequences and extends the boundaries for small molecule-DNA recognition.
Structural analysis of the binding modes of minor groove ligands comprised of disubstituted benzenes
Resumo:
Two-dimensional homonuclear NMR was used to characterize synthetic DNA minor groove-binding ligands in complexes with oligonucleotides containing three different A-T binding sites. The three ligands studied have a C2 axis of symmetry and have the same general structural motif of a central para-substituted benzene ring flanked by two meta-substituted rings, giving the molecules a crescent shape. As with other ligands of this shape, specificity seems to arise from a tight fit in the narrow minor groove of the preferred A-T-rich sequences. We found that these ligands slide between binding subsites, behavior attributed to the fact that all of the amide protons in the ligand backbone cannot hydrogen bond to the minor groove simultaneously.
Resumo:
NMR analysis and molecular dynamics simulations of d(GGTAATTACC)2 and its complex with a tetrahydropyrimidinium analogue of Hoechst 33258 suggest that DNA minor groove recognition in solution involves a combination of conformational selection and induced fit, rather than binding to a preorganised site. Analysis of structural fluctuations in the bound and unbound states suggests that the degree of induced fit observed is primarily a consequence of optimising van der Waals contacts with the walls of the minor groove resulting in groove narrowing through: (i) changes in base step parameters, including increased helical twist and propeller twist; (ii) changes to the sugar–phosphate backbone conformation to engulf the bound ligand; (iii) suppression of bending modes at the TpA steps. In contrast, the geometrical arrangement of hydrogen bond acceptors on the groove floor appears to be relatively insensitive to DNA conformation (helical twist and propeller twist). We suggest that effective recognition of DNA sequences (in this case an A tract structure) appears to depend to a significant extent on the sequence being flexible enough to be able to adopt the geometrically optimal conformation compatible with the various binding interactions, rather than involving ‘lock and key’ recognition.
Resumo:
Analysis of the 2.4-Å resolution crystal structure of the large ribosomal subunit from Haloarcula marismortui reveals the existence of an abundant and ubiquitous structural motif that stabilizes RNA tertiary and quaternary structures. This motif is termed the A-minor motif, because it involves the insertion of the smooth, minor groove edges of adenines into the minor groove of neighboring helices, preferentially at C-G base pairs, where they form hydrogen bonds with one or both of the 2′ OHs of those pairs. A-minor motifs stabilize contacts between RNA helices, interactions between loops and helices, and the conformations of junctions and tight turns. The interactions between the 3′ terminal adenine of tRNAs bound in either the A site or the P site with 23S rRNA are examples of functionally significant A-minor interactions. The A-minor motif is by far the most abundant tertiary structure interaction in the large ribosomal subunit; 186 adenines in 23S and 5S rRNA participate, 68 of which are conserved. It may prove to be the universally most important long-range interaction in large RNA structures.
Resumo:
The discovery of over a dozen low-mass companions to nearby stars has intensified scientific and public interest in a longer term search for habitable planets like our own. However, the nature of the detected companions, and in particular whether they resemble Jupiter in properties and origin, remains undetermined.
Resumo:
Until the mid-1990s a person could not point to any celestial object and say with assurance that “here is a brown dwarf.” Now dozens are known, and the study of brown dwarfs has come of age, touching upon major issues in astrophysics, including the nature of dark matter, the properties of substellar objects, and the origin of binary stars and planetary systems.
Resumo:
The first known extrasolar planet in orbit around a Sun-like star was discovered in 1995. This object, as well as over two dozen subsequently detected extrasolar planets, were all identified by observing periodic variations of the Doppler shift of light emitted by the stars to which they are bound. All of these extrasolar planets are more massive than Saturn is, and most are more massive than Jupiter. All orbit closer to their stars than do the giant planets in our Solar System, and most of those that do not orbit closer to their star than Mercury is to the Sun travel on highly elliptical paths. Prevailing theories of star and planet formation, which are based on observations of the Solar System and of young stars and their environments, predict that planets should form in orbit about most single stars. However, these models require some modifications to explain the properties of the observed extrasolar planetary systems.
Resumo:
Virus invasion of minor veins in inoculated leaves of a host is the likely prelude to systemic movement of the pathogen and to subsequent yield reduction and quality loss. In this study we have analyzed the cell number and arrangement in minor veins within mature leaves of various members of the Solanaceae and Fabaceae families. We then monitored the accumulation pattern of several tobamoviruses and potyviruses in these veins at the time of rapid, phloem-mediated movement of viruses. Vascular parenchyma cells were the predominant and sometimes only cells to become visibly infected among the cells surrounding the sieve elements in minor veins containing 9 to 12 cells. In no instance did we observe a companion cell infected without a vascular parenchyma cell also being infected in the same vein. This suggests that the viruses used in this study first enter the vascular parenchyma cells and then the companion cells during invasion. The lack of detectable infection of smooth-walled companion or transfer cells, respectively, from inoculated leaves of bean (Phaseolus vulgaris) and pea (Pisum sativum) during a period of known rapid, phloem-mediated movement suggests that some viruses may be able to circumvent these cells in establishing phloem-mediated infection. The cause of the barrier to virus accumulation in the companion or transfer cells, the relationship of this barrier to previously identified barriers for virus or photoassimilate transport, and the relevance of these findings to photoassimilate transport models are discussed.
Resumo:
To fully understand vascular transport of plant viruses, the viral and host proteins, their structures and functions, and the specific vascular cells in which these factors function must be determined. We report here on the ability of various cDNA-derived coat protein (CP) mutants of tobacco mosaic virus (TMV) to invade vascular cells in minor veins of Nicotiana tabacum L. cv. Xanthi nn. The mutant viruses we studied, TMV CP-O, U1mCP15-17, and SNC015, respectively, encode a CP from a different tobamovirus (i.e., from odontoglossum ringspot virus) resulting in the formation of non-native capsids, a mutant CP that accumulates in aggregates but does not encapsidate the viral RNA, or no CP. TMV CP-O is impaired in phloem-dependent movement, whereas U1mCP15-17 and SNC015 do not accumulate by phloem-dependent movement. In developmentally-defined studies using immunocytochemical analyses we determined that all of these mutants invaded vascular parenchyma cells within minor veins in inoculated leaves. In addition, we determined that the CPs of TMV CP-O and U1mCP15-17 were present in companion (C) cells of minor veins in inoculated leaves, although more rarely than CP of wild-type virus. These results indicate that the movement of TMV into minor veins does not require the CP, and an encapsidation-competent CP is not required for, but may increase the efficiency of, movement into the conducting complex of the phloem (i.e., the C cell/sieve element complex). Also, a host factor(s) functions at or beyond the C cell/sieve element interface with other cells to allow efficient phloem-dependent accumulation of TMV CP-O.