998 resultados para Miniaturization techniques
Resumo:
Despite its economic significance, competition law still remains fragmented, lacking an international framework allowing for dispute settlement. This, together with the growing importance of non-free-market economies in world trade require us to re-consider and re-evaluate the possibilities of bringing an antitrust suit against a foreign state. If the level playing field on the global marketplace is to be achieved, the possibility of hiding behind the bulwark of state sovereignty should be minimised. States should not be free to act in an anti-competitive way, but at present the legal framework seems ill-equipped to handle such challenges.
This paper deals with the defences available in litigation concerning transnational anti-competitive agreements involving or implicating foreign states. Four important legal doctrines are analysed: non-justiciability (political question doctrine), state immunity, act of state doctrine and foreign state compulsion. The paper addresses also the general problem of applicability of competition laws to a foreign state as such. This is a tale about repetitive unsuccessful efforts to sue OPEC and recent attempts in the US to deal with export cartels of Chinese state-owned enterprises
Resumo:
The techniques of principal component analysis (PCA) and partial least squares (PLS) are introduced from the point of view of providing a multivariate statistical method for modelling process plants. The advantages and limitations of PCA and PLS are discussed from the perspective of the type of data and problems that might be encountered in this application area. These concepts are exemplified by two case studies dealing first with data from a continuous stirred tank reactor (CSTR) simulation and second a literature source describing a low-density polyethylene (LDPE) reactor simulation.
Resumo:
We present three natural language marking strategies based on fast and reliable shallow parsing techniques, and on widely available lexical resources: lexical substitution, adjective conjunction swaps, and relativiser switching. We test these techniques on a random sample of the British National Corpus. Individual candidate marks are checked for goodness of structural and semantic fit, using both lexical resources, and the web as a corpus. A representative sample of marks is given to 25 human judges to evaluate for acceptability and preservation of meaning. This establishes a correlation between corpus based felicity measures and perceived quality, and makes qualified predictions. Grammatical acceptability correlates with our automatic measure strongly (Pearson's r = 0.795, p = 0.001), allowing us to account for about two thirds of variability in human judgements. A moderate but statistically insignificant (Pearson's r = 0.422, p = 0.356) correlation is found with judgements of meaning preservation, indicating that the contextual window of five content words used for our automatic measure may need to be extended. © 2007 SPIE-IS&T.
Resumo:
The ability of building information modeling (BIM) to positively impact projects in the AEC through greater collaboration and integration is widely acknowledged. This paper aims to examine the development of BIM and how it can contribute to the cold-formed steel (CFS) building industry. This is achieved through the adoption of a qualitative methodology encompassing a literature review, exploratory interviews with industry experts, culminating in the development of e-learning material for the sector. In doing so, the research team have collaborated with one of the United Kingdom’s largest cold-formed steel designer/fabricators. By demonstrating the capabilities of BIM software and providing technical and informative videos in its creation, this project has found two key outcomes. Firstly, to provide invaluable assistance in the transition from traditional processes to a fully collaborative 3D BIM as required by the UK Government under the “Government Construction Strategy” by 2016 in all public sector projects. Secondly, to demonstrate BIM’s potential not only within CFS companies, but also within the AEC sector as a whole. As the flexibility, adaptability and interoperability of BIM software is alluded to, the results indicate that the introduction and development of BIM and the underlying ethos suggests that it is a key tool in the development of the industry as a whole.
Resumo:
Northern Irish (and all UK-based) health care is facing major challenges. This article uses a specific theory to recommend and construct a framework to address challenges faced by the author, such as deficits in compression bandaging techniques in healing venous leg ulcers and resistance found when using evidence-based research within this practice. The article investigates the challenges faced by a newly formed community nursing team. It explores how specialist knowledge and skills are employed in tissue viability and how they enhance the management of venous leg ulceration by the community nursing team. To address these challenges and following a process of reflection, Lewin's forcefield analysis model of change management can be used as a framework for some recommendations made.
Resumo:
The presence of NO during the regeneration period of a Pt-Ba/Al O Lean NO Trap (LNT) catalyst modifies significantly the evolution of products formed from the reduction of stored nitrates, particularly nitrogen and ammonia. The use of isotope labelling techniques, feeding NO during the storage period and NO during regeneration allows us to propose three different routes for nitrogen formation based on the different masses detected during regeneration, i.e. N (m/e = 28), N N (m/e = 29) and N (m/e = 30). It is proposed that the formation of nitrogen via Route 1 involves the reaction between hydrogen and NO released from the storage component to form NH mainly. Then, ammonia further reacts with NO located downstream to form N . In Route 2, it is postulated that the incoming NO reacts with hydrogen to form NH in the reactor zone where the trap has been already regenerated. This isotopically labelled ammonia travels through the catalyst bed until it reaches the regeneration front where it participates in the reduction of stored nitrates ( NO ) to form N N. The formation of N via Route 3 is believed to occur by the reaction between incoming NO and H . The modification of the hydrogen concentration fed during regeneration affects the relative importance of H or NH as reductants and thus the production of N via Route 1 and N N via Route 2.
Resumo:
In this paper, we re-examine two important aspects of the dynamics of relative primary commodity prices, namely the secular trend and the short run volatility. To do so, we employ 25 series, some of them starting as far back as 1650 and powerful panel data stationarity tests that allow for endogenous multiple structural breaks. Results show that all the series are stationary after allowing for endogenous multiple breaks. Test results on the Prebisch–Singer hypothesis, which states that relative commodity prices follow a downward secular trend, are mixed but with a majority of series showing negative trends. We also make a first attempt at identifying the potential drivers of the structural breaks. We end by investigating the dynamics of the volatility of the 25 relative primary commodity prices also allowing for endogenous multiple breaks. We describe the often time-varying volatility in commodity prices and show that it has increased in recent years.
Resumo:
When studying heterogeneous aquifer systems, especially at regional scale, a degree of generalization is anticipated. This can be due to sparse sampling regimes, complex depositional environments or lack of accessibility to measure the subsurface. This can lead to an inaccurate conceptualization which can be detrimental when applied to groundwater flow models. It is important that numerical models are based on observed and accurate geological information and do not rely on the distribution of artificial aquifer properties. This can still be problematic as data will be modelled at a different scale to which it was collected. It is proposed here that integrating geophysics and upscaling techniques can assist in a more realistic and deterministic groundwater flow model. In this study, the sedimentary aquifer of the Lagan Valley in Northern Ireland is chosen due to intruding sub-vertical dolerite dykes. These dykes are of a lower permeability than the sandstone aquifer. The use of airborne magnetics allows the delineation of heterogeneities, confirmed by field analysis. Permeability measured at the field scale is then upscaled to different levels using a correlation with the geophysical data, creating equivalent parameters that can be directly imported into numerical groundwater flow models. These parameters include directional equivalent permeabilities and anisotropy. Several stages of upscaling are modelled in finite element. Initial modelling is providing promising results, especially at the intermediate scale, suggesting an accurate distribution of aquifer properties. This deterministic based methodology is being expanded to include stochastic methods of obtaining heterogeneity location based on airborne geophysical data. This is through the Direct Sample method of Multiple-Point Statistics (MPS). This method uses the magnetics as a training image to computationally determine a probabilistic occurrence of heterogeneity. There is also a need to apply the method to alternate geological contexts where the heterogeneity is of a higher permeability than the host rock.
Resumo:
Accurate conceptual models of groundwater systems are essential for correct interpretation of monitoring data in catchment studies. In surface-water dominated hard rock regions, modern ground and surface water monitoring programmes often have very high resolution chemical, meteorological and hydrological observations but lack an equivalent emphasis on the subsurface environment, the properties of which exert a strong control on flow pathways and interactions with surface waters. The reasons for this disparity are the complexity of the system and the difficulty in accurately characterising the subsurface, except locally at outcrops or in boreholes. This is particularly the case in maritime north-western Europe, where a legacy of glacial activity, combined with large areas underlain by heterogeneous igneous and metamorphic bedrock, make the structure and weathering of bedrock difficult to map or model. Traditional approaches which seek to extrapolate information from borehole to field-scale are of limited application in these environments due to the high degree of spatial heterogeneity. Here we apply an integrative and multi-scale approach, optimising and combining standard geophysical techniques to generate a three-dimensional geological conceptual model of the subsurface in a catchment in NE Ireland. Available airborne LiDAR, electromagnetic and magnetic data sets were analysed for the region. At field-scale surface geophysical methods, including electrical resistivity tomography, seismic refraction, ground penetrating radar and magnetic surveys, were used and combined with field mapping of outcrops and borehole testing. The study demonstrates how combined interpretation of multiple methods at a range of scales produces robust three-dimensional conceptual models and a stronger basis for interpreting groundwater and surface water monitoring data.
Resumo:
This paper reports the findings from internal mould cooling trials using a water spray configuration applied at various internal mould air temperatures from 120°C to 180°C for an aluminium mould. To achieve maximum benefit in terms of cycle time reduction, internal mould water cooling was used in conjunction with a combination of external forced air and water cooling. Savings in cooling times of up to 30% were achieved compared to conventional external only forced air cooling.