999 resultados para Micro-imaging
Resumo:
This article provides expert opinion on the use of cardiovascular magnetic resonance (CMR) in young patients with congenital heart disease (CHD) and in specific clinical situations. As peculiar challenges apply to imaging children, paediatric aspects are repeatedly discussed. The first section of the paper addresses settings and techniques, including the basic sequences used in paediatric CMR, safety, and sedation. In the second section, the indication, application, and clinical relevance of CMR in the most frequent CHD are discussed in detail. In the current era of multimodality imaging, the strengths of CMR are compared with other imaging modalities. At the end of each chapter, a brief summary with expert consensus key points is provided. The recommendations provided are strongly clinically oriented. The paper addresses not only imagers performing CMR, but also clinical cardiologists who want to know which information can be obtained by CMR and how to integrate it in clinical decision-making.
Resumo:
The time required to image large samples is an important limiting factor in SPM-based systems. In multiprobe setups, especially when working with biological samples, this drawback can make impossible to conduct certain experiments. In this work, we present a feedfordward controller based on bang-bang and adaptive controls. The controls are based in the difference between the maximum speeds that can be used for imaging depending on the flatness of the sample zone. Topographic images of Escherichia coli bacteria samples were acquired using the implemented controllers. Results show that to go faster in the flat zones, rather than using a constant scanning speed for the whole image, speeds up the imaging process of large samples by up to a 4x factor.
Resumo:
O Breast Imaging Reporting and Data System (BI-RADS™), do American College of hRadiology, foi concebido para padronizar o laudo mamográfico e reduzir os fatores de confusão na descrição e interpretação das imagens, além de facilitar o monitoramento do resultado final. OBJETIVO: Identificar a maneira como vem sendo utilizado o BI-RADS™, gerando informações que possam auxiliar o Colégio Brasileiro de Radiologia a desenvolver estratégias para aperfeiçoar o seu uso. MATERIAIS E MÉTODOS: Os dados foram coletados na cidade de Goiânia, GO. Foram solicitados os exames de mamografia anteriores a todas as mulheres que se dirigiram ao serviço para realização de mamografia entre janeiro/2003 e junho/2003. Foram incluídos na análise exames anteriores, realizados entre 1/7/2001 e 30/6/2003. RESULTADOS: Foram coletados 104 laudos anteriores, emitidos por 40 radiologistas de 33 diferentes serviços. Dos 104 laudos, 77% (n = 80) utilizavam o BI-RADS™. Destes, apenas 15% (n = 12) eram concisos, nenhum utilizava a estrutura e organização recomendadas pelo sistema, 98,75% (n = 79) não respeitavam o léxico e 65% (n = 51) não faziam recomendação de conduta. CONCLUSÃO: O BI-RADS™, apesar de bastante utilizado, não foi reconhecido como sistema para padronização dos laudos. Foi usado quase exclusivamente como forma de classificação final dos exames.
Resumo:
STUDY OBJECTIVES: That sleep deprivation increases the brain expression of various clock genes has been well documented. Based on these and other findings we hypothesized that clock genes not only underlie circadian rhythm generation but are also implicated in sleep homeostasis. However, long time lags have been reported between the changes in the clock gene messenger RNA levels and their encoded proteins. It is therefore crucial to establish whether also protein levels increase within the time frame known to activate a homeostatic sleep response. We report on the central and peripheral effects of sleep deprivation on PERIOD-2 (PER2) protein both in intact and suprachiasmatic nuclei-lesioned mice. DESIGN: In vivo and in situ PER2 imaging during baseline, sleep deprivation, and recovery. SETTINGS: Mouse sleep-recording facility. PARTICIPANTS: Per2::Luciferase knock-in mice. INTERVENTIONS: N/A. MEASUREMENTS AND RESULTS: Six-hour sleep deprivation increased PER2 not only in the brain but also in liver and kidney. Remarkably, the effects in the liver outlasted those observed in the brain. Within the brain the increase in PER2 concerned the cerebral cortex mainly, while leaving suprachiasmatic nuclei (SCN) levels unaffected. Against expectation, sleep deprivation did not increase PER2 in the brain of arrhythmic SCN-lesioned mice because of higher PER2 levels in baseline. In contrast, liver PER2 levels did increase in these mice similar to the sham and partially lesioned controls. CONCLUSIONS: Our results stress the importance of considering both sleep-wake dependent and circadian processes when quantifying clock-gene levels. Because sleep deprivation alters PERIOD-2 in the brain as well as in the periphery, it is tempting to speculate that clock genes constitute a common pathway mediating the shared and well-known adverse effects of both chronic sleep loss and disrupted circadian rhythmicity on metabolic health.
Resumo:
Post-testicular sperm maturation occurs in the epididymis. The ion concentration and proteins secreted into the epididymal lumen, together with testicular factors, are believed to be responsible for the maturation of spermatozoa. Disruption of the maturation of spermatozoa in the epididymis provides a promising strategy for generating a male contraceptive. However, little is known about the proteins involved. For drug development, it is also essential to have tools to study the function of these proteins in vitro. One approach for screening novel targets is to study the secretory products of the epididymis or the G protein-coupled receptors (GPCRs) that are involved in the maturation process of the spermatozoa. The modified Ca2+ imaging technique to monitor release from PC12 pheochromocytoma cells can also be applied to monitor secretory products involved in the maturational processes of spermatozoa. PC12 pheochromocytoma cells were chosen for evaluation of this technique as they release catecholamines from their cell body, thus behaving like endocrine secretory cells. The results of the study demonstrate that depolarisation of nerve growth factor -differentiated PC12 cells releases factors which activate nearby randomly distributed HEL erythroleukemia cells. Thus, during the release process, the ligands reach concentrations high enough to activate receptors even in cells some distance from the release site. This suggests that communication between randomly dispersed cells is possible even if the actual quantities of transmitter released are extremely small. The development of a novel method to analyse GPCR-dependent Ca2+ signalling in living slices of mouse caput epididymis is an additional tool for screening for drug targets. By this technique it was possible to analyse functional GPCRs in the epithelial cells of the ductus epididymis. The results revealed that, both P2X- and P2Y-type purinergic receptors are responsible for the rapid and transient Ca2+ signal detected in the epithelial cells of caput epididymides. Immunohistochemical and reverse transcriptase-polymerase chain reaction (RTPCR) analyses showed the expression of at least P2X1, P2X2, P2X4 and P2X7, and P2Y1 and P2Y2 receptors in the epididymis. Searching for epididymis-specific promoters for transgene delivery into the epididymis is of key importance for the development of specific models for drug development. We used EGFP as the reporter gene to identify proper promoters to deliver transgenes into the epithelial cells of the mouse epididymis in vivo. Our results revealed that the 5.0 kb murine Glutathione peroxidase 5 (GPX5) promoter can be used to target transgene expression into the epididymis while the 3.8 kb Cysteine-rich secretory protein-1 (CRISP-1) promoter can be used to target transgene expression into the testis. Although the visualisation of EGFP in living cells in culture usually poses few problems, the detection of EGFP in tissue sections can be more difficult because soluble EGFP molecules can be lost if the cell membrane is damaged by freezing, sectioning, or permeabilisation. Furthermore, the fluorescence of EGFP is dependent on its conformation. Therefore, fixation protocols that immobilise EGFP may also destroy its usefulness as a fluorescent reporter. We therefore developed a novel tissue preparation and preservation techniques for EGFP. In addition, fluorescence spectrophotometry with epididymal epithelial cells in suspension revealed the expression of functional purinergic, adrenergic, cholinergic and bradykinin receptors in these cell lines (mE-Cap27 and mE-Cap28). In conclusion, we developed new tools for studying the role of the epididymis in sperm maturation. We developed a new technique to analyse GPCR dependent Ca2+ signalling in living slices of mouse caput epididymis. In addition, we improved the method of detecting reporter gene expression. Furthermore, we characterised two epididymis-specific gene promoters, analysed the expression of GPCRs in epididymal epithelial cells and developed a novel technique for measurement of secretion from cells.
Resumo:
(Matrix-assisted) laser desorption/ionization ((MA)LDI) mass spectrometry imaging (MSI) has been driven by remarkable technological developments in the last couple of years. Although molecular information of a wide range of molecules including peptides, lipids, metabolites, and xenobiotics can be mapped, (MA)LDI MSI only leads to the detection of the most abundant soluble molecules in the cells and, consequently, does not provide access to the least expressed species, which can be very informative in the scope of disease research. Within a short period of time, numerous protocols and concepts have been developed and introduced in order to increase MSI sensitivity, including in situ tissue chemistry and solvent-free matrix depositions. In this chapter, we will discuss some of the latest developments in the field of high-sensitivity MSI using solvent-free matrix depositions and will detail protocols of two methods with their capability of enriching molecular MSI signal as demonstrated within our laboratory.
Resumo:
OBJETIVO: Avaliar artigos, na literatura, que verificam o valor preditivo positivo das categorias 3, 4 e 5 do Breast Imaging Reporting and Data System (BI-RADS®). MATERIAIS E MÉTODOS: Foi realizada pesquisa na base de dados Medline utilizando os termos "predictive value" e "BI-RADS". Foram incluídos 11 artigos nesta revisão. RESULTADOS: O valor preditivo positivo das categorias 3, 4 e 5 variou entre 0% e 8%, 4% e 62%, 54% e 100%, respectivamente. Três artigos avaliaram, concomitantemente, os critérios morfológicos das lesões que apresentaram maior valor preditivo positivo na mamografia, sendo nódulo espiculado o critério com maior valor preditivo positivo. CONCLUSÃO: Houve grande variabilidade do valor preditivo positivo das categorias 3, 4 e 5 do BI-RADS® em todos os estudos, porém foram identificadas diferenças metodológicas que limitaram a comparação desses estudos.
Resumo:
Imaging plays a key role in the detection of a diaphragmatic pathology in utero. US is the screening method, but MRI is increasingly performed. Congenital diaphragmatic hernia is by far the most often diagnosed diaphragmatic pathology, but unilateral or bilateral eventration or paralysis can also be identified. Extralobar pulmonary sequestration can be located in the diaphragm and, exceptionally, diaphragmatic tumors or secondary infiltration of the diaphragm from tumors originating from an adjacent organ have been observed in utero. Congenital abnormalities of the diaphragm impair normal lung development. Prenatal imaging provides a detailed anatomical evaluation of the fetus and allows volumetric lung measurements. The comparison of these data with those from normal fetuses at the same gestational age provides information about the severity of pulmonary hypoplasia and improves predictions about the fetus's outcome. This information can help doctors and families to make decisions about management during pregnancy and after birth. We describe a wide spectrum of congenital pathologies of the diaphragm and analyze their embryological basis. Moreover, we describe their prenatal imaging findings with emphasis on MR studies, discuss their differential diagnosis and evaluate the limits of imaging methods in predicting postnatal outcome.
Resumo:
In recent years, technological advances have allowed manufacturers to implement dual-energy computed tomography (DECT) on clinical scanners. With its unique ability to differentiate basis materials by their atomic number, DECT has opened new perspectives in imaging. DECT has been used successfully in musculoskeletal imaging with applications ranging from detection, characterization, and quantification of crystal and iron deposits; to simulation of noncalcium (improving the visualization of bone marrow lesions) or noniodine images. Furthermore, the data acquired with DECT can be postprocessed to generate monoenergetic images of varying kiloelectron volts, providing new methods for image contrast optimization as well as metal artifact reduction. The first part of this article reviews the basic principles and technical aspects of DECT including radiation dose considerations. The second part focuses on applications of DECT to musculoskeletal imaging including gout and other crystal-induced arthropathies, virtual noncalcium images for the study of bone marrow lesions, the study of collagenous structures, applications in computed tomography arthrography, as well as the detection of hemosiderin and metal particles.
Resumo:
This article analyses the impact that innovation expenditure and intrasectoral and intersectoral externalities have on productivity in Spanish firms. While there is an extensive literature analysing the relationship between innovation and productivity, in this particular area there are far fewer studies that examine the importance of sectoral externalities, especially with the focus on Spain. One novelty of the study, which covers the industrial and service sectors, is that we also consider jointly the technology level of the sector in which the firm operates and the firm size. The database used is the Technological Innovation Panel, PITEC, which includes 12,813 firms for the year 2008 and has been little used in this type of study. The estimation method used is Iteratively Reweighted Least Squares method, IRLS, which is very useful for obtaining robust estimations in the presence of outliers. The results confirm that innovation has a positive effect on productivity, especially in high-tech and large firms. The impact of externalities is more heterogeneous because, while intrasectoral externalities have a poitive and significant effect, especially in low-tech firms independently of size, intersectoral externalities have a more ambiguous effect, being clearly significant for advanced industries in which size has a positive effect.
Resumo:
Regional disparities in unemployment rates are large and persistent. The literature provides evidence of their magnitude and evolution, as well as evidence of the role of certain economic, demographic and environmental factors in explaining the gap between regions of low and high unemployment. Most of these studies, however, adopt an aggregate approach and so do not account for the individual characteristics of the unemployed and employed in each region. This paper, by drawing on micro-data from the Spanish wave of the Labour Force Survey, seeks to remedy this shortcoming by analysing regional differentials in unemployment rates. An appropriate decomposition of the regional gap in the average probability of being unemployed enables us to distinguish between the contribution of differences in the regional distribution of individual characteristics from that attributable to a different impact of these characteristics on the probability of unemployment. Our results suggest that the well-documented disparities in regional unemployment are not just the result of regional heterogeneity in the distribution of individual characteristics. Non-negligible differences in the probability of unemployment remain after controlling for this type of heterogeneity, as a result of differences across regions in the impact of the observed characteristics. Among the factors considered in our analysis, regional differences in the endowment and impact of an individual’s education are shown to play a major role.
Resumo:
In recent years, technological advances have allowed manufacturers to implement dual-energy computed tomography (DECT) on clinical scanners. With its unique ability to differentiate basis materials by their atomic number, DECT has opened new perspectives in imaging. DECT has been successfully used in musculoskeletal imaging with applications ranging from detection, characterization, and quantification of crystal and iron deposits, to simulation of noncalcium (improving the visualization of bone marrow lesions) or noniodine images. Furthermore, the data acquired with DECT can be postprocessed to generate monoenergetic images of varying kiloelectron volts, providing new methods for image contrast optimization as well as metal artifact reduction. The first part of this article reviews the basic principles and technical aspects of DECT including radiation dose considerations. The second part focuses on applications of DECT to musculoskeletal imaging including gout and other crystal-induced arthropathies, virtual noncalcium images for the study of bone marrow lesions, the study of collagenous structures, applications in computed tomography arthrography, as well as the detection of hemosiderin and metal particles.
Resumo:
Whole-body coverage using MRI was developed almost 2 decades ago. The first applications focused on the investigation of the skeleton to detect neoplastic disease, mainly metastases from solid cancers, and involvement by multiple myeloma and lymphoma. But the extensive coverage of the whole musculoskeletal system, combined with the exquisite sensitivity of MRI to tissue alteration in relation to different pathologic conditions, mainly inflammation, has led to the identification of a growing number of indications outside oncology. Seronegative rheumatisms, systemic sclerosis, inflammatory diseases involving muscles or fascias, and multifocal osseous, vascular, or neurologic diseases represent currently validated or emerging indications of whole-body MRI (WB-MRI). We first illustrate the most valuable indications of WB-MRI in seronegative rheumatisms that include providing significant diagnostic information in patients with negative or ambiguous MRI of the sacroiliac joints and the lumbar spine, assessing disease activity in advanced (ankylosed) central disease, and evaluating the peripherally dominant forms of spondyloarthropathy. Then we review the increasing indications of WB-MRI in other rheumatologic and nonneoplastic disorders, underline the clinical needs, and illustrate the role of WB-MRI in the positive diagnosis and evaluation of disease burden, therapeutic decisions, and treatment monitoring.