980 resultados para Mice, Mutant Strains
Resumo:
Recording with both parallel and orthogonal linearly polarized lights, polarization holographic storage in genetic mutant BR-D96N film is reported with both transmission type geometry and reflection type geometry. Polarization properties of diffraction light and scattering light are discussed for two different cases, parallel polarization recording and orthogonal polarization recording. It shows that, compared with recording with parallel polarization lights, orthogonal polarization holography can separate the diffraction light from the scattering noise, therefore improving the signal-to-noise ratio. It also shows that, compared with reconstruction with reference light, reconstruction with phase conjugated wave of the reference light can improve the signal-to-noise ratio of the reconstructed diffraction image, and also the wave-front aberration of the object light introduced by irregular phase object in the optical pass-way can also be corrected effectively, which ensures that the reconstructed diffraction image has a better fidelity. The preliminary angle-multiplexed volume holographic storage multiplexed by transmission type geometry and reflection type geometry is demonstrated in the BR-D96N film. Experiment shows that there is no cross-talk between the two pages of images except for some scattering noises.
Resumo:
Raman scattering measurement has been used to study the residual strains in the thin 3C-SiC/Si(001) epilayers with a variation of film thickness from 0.1 to 1.2 mu m. which were prepared by chemical vapor deposition (CVD)growth. Two methods have been exploited to figure our the residual strains and the exact LO bands. The final analyzing results show that residual strains exist in the 3C-SiC epilayers. The average stress is 1.3010 GPa, and the relative change of the lattice constant is 1.36 parts per thousand. Our measurements also show that 3C-SiC phonons are detectable even for the samples with film thickness in the range of 0.1 to 0.2 mu m. (C) 2000 Published by Elsevier Science S.A. All rights reserved.
Resumo:
本文从四川绵竹酒厂、成都市龙泉长安垃圾填埋场以及四川大学荷花池底的厌氧污泥中先后分离得到63株厌氧产氢菌,其中H-8、H-61、HC-10等16株产氢细菌产氢能力较高,HC-10的产氢能力最高,最大产氢量和最大产氢速率分别达到2840 ml H2/L培养基和25.39 mmol H2/g drycell·h,对HC-10进行生理生化鉴定和分子生物学鉴定,判定其为clostridium sp.,对HC-10的产氢条件进行了研究,结果表明,该菌的最适生长温度为35 ℃,最适生长初始pH为7,以葡萄糖为最佳碳源,以蛋白胨为最佳氮源,不利用无机氮源,其产氢发酵液相产物以乙醇和乙酸为主,其发酵类型属于乙醇型发酵。此外,以酒糟废液作为底物,进行了菌株HC-10的生物强化试验,研究表明,投加了HC-10的强化系统其产氢量比对照高出40.32%。 同时为了获得厌氧产氢菌的高效突变株,分别以产氢菌H-8和H-61为原始菌株进行微波诱变处理,对微波诱变参数进行了优化,考察了突变株的遗传稳定性、产氢特性及耐酸性。菌株H-8经过微波诱变得到5株高产氢突变株HW7、HW33、HW181、HW184、HW195,经多次传代表明HW195是稳定的高产突变株。突变株HW195具有较好的耐酸性,在pH值为2.8时仍能生长。通过间歇发酵实验,其最大产氢量和最大产氢速率分别达到2460 mL/L培养基和27.97 mmol H2/g drycell·h,比原始菌分别提高了50.75%和41.7%。菌株H-61经过微波诱变后选育得到的突变株HW-18,其最大产氢量和最大产氢速率分别达到2190 mL/L培养基和25.86 mmol H2/g drycell·h,比原始菌分别提高了23.03%和31.00%。 为了对比各种诱变方式对产氢菌产氢能力的影响,以厌氧产氢菌H-61为原始菌株,先后经亚硝基胍(NTG)、紫外(UV)诱变,选育得到1株高产突变株HCM-23。在葡萄糖浓度为10 g/L的条件下,其产氢量为3024 mL/L培养基,比原始菌株提高了69.89%;其最大产氢速率为33.19 mmol H2/g drycell·h,比原始菌株提高了68.14%。经过多次传代实验,稳定性良好。其发酵末端产物以乙醇和乙酸为主,属于典型乙醇型发酵。其最适产氢初始pH为6.5,最适生长温度为36 ℃,以蔗糖为最佳碳源。与原始菌株相比,突变株HCM-23的产氢特性发生了改变,如生长延滞期延长,可利用无机氮源等。 From anaerobic activated sludge, 16 strains of hydrogen producing bacteria were newly isolated. One of them named as HC-10 had the highest hydrogen producing capability, under the batch fermentative hydrogen production condition, the maximal hydrogen yield and hydrogen production rate was 2840 mL/L culture and 25.39 mmol H2/g drycell·h. It was identified as clostridium sp.HC-10 by 16S rDNA sequence analysis. Various parameters for hydrogen production, including substrates, initial pH and temperature, have been studied. The optimum condition for hydrogen producing of strain HC-10 were achieved as: initial pH 7.0, temperature 35 ℃, glucose as the favorite substrate, Moreover, using distiller's solubles wastewater as substrate, HC-10 strain was added in the biohydrogen producing system to research the bioaugmentation effection. The results showed that the hydrogen production of bioaugmentation system was 40.32% higher than the noaugmentation system. An anaerobic, hydrogen producing strain H-8 was irradiated by microwave to optimize the microwave mutagenesis condition, and to test the heredity, hydrogen-producing potential and aciduric of the mutants. An aciduric mutant named as HW195 with steady hydrogen-producing capability was obtained, which can grow at pH 2.8. Its capability of hydrogen production was tested in the batch culture experiments. The maximum hydrogen yield and hydrogen production rate was 2460 mL/L culture and 29.97 mmol H2/g drycell·h, which was 50.7% and 41.7% higher than those of the initial strain, respectively. When used the strain H-61 as original strain, a mutant named as HW18 was obtained. The maximum hydrogen yield and hydrogen production rate was 2190 mL/L culture and 25.86 mmol H2/g drycell·h, which was 23.03% and 31.00% higher than those of the initial strain, respectively. The results demonstrated that microwave mutagenesis could be used in the field of hydrogen producing microorganism. The hydrogen producing strain H-61 was used as an original strain which was induced by NTG and UV for increasing and the hydrogen production capability. One of the highest efficient H2-producing mutants was named as HCM-23 with its stable hydrogen production capability. which was tested in the batch culture experiments. With the condition of 10 g/L glucose, its cumulative hydrogen yield and hydrogen production rate was 3024 mL/L culture and 33.19 mmol H2/g drycell·h, 69.89%and 68.14% higher than that of the original strain, respectively. The terminal liquid product compositions showed that the mutant HCM-23 fermentation was ethanol type, while the original strain H-61 fermentation was butyric acid type. Varieties of parameters of hydrogen production fermentation were studied, including time, carbon source, nitrogen source, glucose concentration, glucose utilization, initial pH and incubation temperature had been studied, indicated the optimum condition of hydrogen production for the mutant HCM-23 as initial pH6.5, temperature 36 ℃, and the favorite substrate was sucrose. The hydrogen production characters of the mutant and the original strain were different, such as, the growth lag phase and the utilization of inorganic nitrogen source, etc. This work shows a good application potential of NTG-UV combined mutation in the biohydrogen production. And the hydrogen production mechanism and metabolic pathway should be explored furthermore.
Resumo:
毛壳菌属很多种类具有重要生防价值,其生防机理包括对植物病原真菌的重寄生作用、诱导植物产生抗病性、产生抗真菌活性的次生代谢产物等。迄今,学界对毛壳菌的研究主要集中在毛壳菌的生防机理,毛壳菌活性次生代谢产物的分离等方面。本研究致力于产抗生素的毛壳菌的种间原生质体融合,从产抗生素毛壳菌菌株的筛选开始,进而对产抗生素的角毛壳菌进行诱变选育,最终用产不同抗生素的角毛壳菌与球毛壳菌进行种间原生质体融合。主要有以下五方面研究结果。 1、毛壳菌抗真菌活性物质产生菌株的筛选:不同毛壳菌菌株发酵液采用琼脂扩散法对植物病原真菌进行抑菌活性试验,结果显示,菌株CH08和CH23的发酵液对芒果炭疽、苹果炭疽和马铃薯晚疫菌具有抑制作用。菌株CH16和CH17的发酵液对芒果炭疽菌、苹果炭疽菌有抑制作用。菌株CH21发酵液对辣椒炭疽菌和西瓜枯萎菌有抑制作用。经形态学研究,菌株CH08、CH16、CH17和CH23鉴定为球毛壳菌,菌株CH21鉴定为角毛壳菌。对角毛壳菌与球毛壳菌菌株发酵液抑菌谱比较,发现角毛壳菌与球毛壳菌发酵液具有明显不同的抑菌谱,表明角毛壳菌与球毛壳菌产生不同的抗真菌活性物质。 2、角毛壳菌(CH21)和球毛壳菌(CH08)原生质体制备和再生条件研究:考察了菌龄、酶浓度、稳渗剂及其浓度、酶解温度、酶解时间及再生培养基对原生质体制备和再生的影响。用菌龄为生长54 h的角毛壳菌菌丝,以0.06 M磷酸缓冲液(pH6.0)配制成含蜗牛酶15 mg/ml、溶壁酶10 mg/ml、蔗糖0.6 mol/L的酶解液,30℃酶解1.5 h,原生质体释放量2.02×107个/g;以PDA为再生培养基,0.7 mol/L的蔗糖再生稳渗剂,再生率可达51.45%。用菌龄为生长48 h的球毛壳菌菌丝,以0.06 M磷酸缓冲液(pH6.0)配制成含蜗牛酶15 mg/ml、溶壁酶10 mg/ml、蔗糖0.6 mol/L的酶解液,30℃酶解1 h,原生质体释放量达1.57×108个/g;以PDA为再生培养基,0.7 mol/L的蔗糖为再生稳渗剂,再生率可达41.48%。 3、角毛壳菌(CH21)原生质体紫外诱变选育:以CH21为出发菌株,制备原生质体进行紫外诱变,诱变条件为:15 w紫外灯,距离30 cm,照射90 s,致死率80%~85%。建立了诱变菌株初筛的双层平板筛选模型。经平板初筛和摇瓶复筛,获得一株突变菌株CH21-I-402,其发酵液抑菌活性较出发菌株提高18.3%。 4、抗性标记菌株的获得:菌株CH21-I-402和CH08抗生素药敏试验表明, CH21-I-402菌株对潮霉素有抗性、对G418(Geneticin)敏感,菌株CH08对潮霉素和G418都敏感。根癌农杆菌EHA105介导的新霉素磷酸转移酶基因转化球毛壳菌,经PCR检测,新霉素磷酸转移酶基因成功转化进菌株CH08-GR70,CH08-GR120。转化子对G418抗性提高3~4倍,对潮霉素仍然比较敏感。 5、以G418和潮霉素抗性为筛选标记的原生质体融合与融合菌株AFLP分析:制备角毛壳菌CH21-I-402和球毛壳菌CH08-GR70原生质体,以35%的PEG6000为助融剂进行原生质体融合,以65 μg/ml的潮霉素和60 μg/ml G418为抗性筛选标记,获得46个再生菌株。再生菌株连续传代5代后,再生菌株表现出多种形态类型。利用AFLP技术对再生菌株及亲本菌株基因组DNA分析表明,再生菌株PF1、PF26为融合菌株。抑菌活性测试表明,融合菌株PF26发酵液对芒果炭疽菌和苹果轮纹菌有强的抑制作用,且抑菌活性比亲本球毛壳菌明显提高。 Chaetomium spp. have great potentials as biocontrol agents against a range of plant pathogens on the basis of its mycoparasitism, induced plant disease resistance, production of antifungal metabolites, and so on. Previous researches on C. spp. mostly focused on the mechanisms of its biocontrol and the isolation of secondary metabolites. In this study, screening antifungal C. spp., mutation breeding of C. cupreum and interspecies protoplast fusion between C. cupreum and C. globosum were carried out, respectively. The corresponding results are as follows: Firstly, among more than 40 C. spp., the strains produced anti-fungal antibiotics were screened by agar diffusion experiments. Results showed that both CH08 and CH23 had inhibition against Colletotrichum gloeosporioides, Cladosporium fulvum, and Phytophthora infestans. Both CH16 and CH17 had inhibition against Colletotrichum gloeosporioides and Cladosporium fulvum. In addition, CH21 exhibited anti-fungal activity against Fusarium oxysporum f. sp niveum and Colletotrichum capsici. Furthermore, CH08, CH16, CH17 and CH23 were identified as C. globosum, CH21 was proved to be C. cupreum based on morphology. The comparison of the anti-fungal spectrum between C. cupreum and C. globosum, showed they could produce different antibiotics. Secondly, specified protocols for preparing and regenerating protoplasts from mycelia of C. cupreum CH21 and C. globosum CH08 were studied. The effects of the age mycelia, the concentration of enzyme, digestion temperature and time, kinds of osmotic stabilizer and regeneration medium on protoplasts preparation and regeneration were all optimized, respectively. In one protocol, with 15 mg/mL snailase, 10 mg/mL lywallzyme, 0.6 M sucrose, in 0.06 M phosphate buffer (pH6.0), and digested for 1.5 h at 30 ºC, 2.02×107 protoplasts from each gram mycelia were obtained from cultures of C. cupreum CH21 grown in potato dextrose broth (PDB) medium for 54 h. And when 0.7 M sucrose was used as osmotic stabilizer in the regeneration medium OPDA (potato dextrose agar with osmotic stabilize), the regeneration efficiency of protoplasts was 51.45%. In another protocol, with 15 mg/mL snailase, 10 mg/mL lywallzyme, 0.6 M sucrose, in 0.06 M phosphate buffer (pH6.0), and digested for 1 h at 30 ºC, 1.57×108 protoplasts from each gram mycelia were obtained from cultures of C. globosum CH08 grown in PDB for 48 h. And when 0.7 M sucrose was used as osmotic stabilizer in the regeneration medium OPDA, the regeneration efficiency of protoplasts was 41.48%. Thirdly, the mutagenesis conditions and secondary screening model of C. cupreum CH21 were explored. An 80% to 85% death rate could be achieved when the protoplasts of C. cupreum CH21 were irradiated by 15 w UV lamp from 30 cm distance for 90 s. In addition, the doublelayer plate’s method for the primary screening of high-producing antibiotics strains was established. A high yielding antibiotic mutant CH21-I-402 was obtained through the primary screening on plate and the secondary selection in Erlenmeyer flask, compared to the original CH21 strain, the antifungal activity of the mutant CH21-I-402 was increased by 18.3%. Fourth, the sensitivity to antibiotics of both C. cupreum CH21-I-402 and C. globusm CH08 was detected. Results showed C. cupreum CH21-I-402 was sensitive to G418 (Geneticin) (Gs) and resistant to Hygromycin B(Hr), and C. globusm CH08 was sensitive to both G418 (Geneticin) (Gs) and Hygromycin B(Hs). At the same time, neomycin phosphotransferase II (npt II) gene was transformed into C. globusm CH08(Gs, Hs) mediated by Agrobacterium tumefaciens EHA105, and the npt II gene was verified by polymerase chain reaction in resistance to G418 strains CH08-GR70 and CH08-GR120. The transformants still showed sensitive to Hygromycin B(Hs). Finally, a selection system for hybrids was set up by interspecies protoplast fusion between C. cupreum and C. globusm using dominant selective drug resistance markers. At first, protoplasts of C. cupreum CH21-I-402 (Hr, Gs) and C. globusm CH08-GR70 (Hs, Gr) were prepared, then the protoplasts were fused in the presence of 35% polyethylene glycol 6000 and regenerated on OPDA medium with 65 μg/ml Hygromycin B and 60μg/ml G418, at last 46 colonies with Hr and Gr were obtained. Even after 5 generations’ subculture, most of the colonies displayed significant difference in taxonomic characteristics with their parental strains. Regenerated strains PF1 and PF26 were confirmed as fusants by amplified fragment length polymorphisms analysis with the genomic DNA as the model. PF26 showed higher inhibitory activity against Colletotrichum gloeosporioides and Macrophoma kuwatsukai than that of the parental strain C. globusm.
Resumo:
本文根据我们实验室建立的发酵产物中辅酶Q10定性定量检测方法,筛选得到一株可以代谢产生较多辅酶Q10的野生菌株放射形土壤杆菌(Agrobacterium radiobacter No.50)。 为了提高放射形土壤杆菌的辅酶Q10的产量,本实验利用液体培养研究了单因素对菌株辅酶Q10产量的影响,并用正交法确定了最佳液态发酵条件。最佳发酵培养基是:葡萄糖20g,蔗糖40g, 硫酸铵10g,玉米浆30g, 酵母膏3g,K2HPO4 3g,MgSO4.7H2O 1g,蒸馏水1000mL,pH 7.0-7.2。最佳发酵条件是:转接斜面菌种到种子培养基, 转速220r/min、温度28。C培养24h后,转入发酵培养基(250mL三角拼装液量为50mL,pH 7.0), 接种量为10%,转速220r/min、温度28。C,培养120h。在此条件下,菌体湿重约为50g/L,辅酶Q10含量约为20mg/L。 本文以放射形土壤杆菌为出发菌株进行诱变育种,以期获得辅酶Q10高产菌。根据微生物育种原理、参照辅酶Q10的代谢调控机制,以野生型放射形土壤杆菌(Agrobacterium radiobacter No.50)为出发菌株,采用紫外线和亚硝基胍复合诱变技术,依次筛选得到菌体提取物M抗性菌ARM-7、烟草提取物T抗性菌株ARMT-26、Vk3抗性菌株ARMTV-25、链霉素抗性菌株ARMTVS-32,菌株ARMTVS-32产量达到了36.8mg/L,与原始出发菌株相比,产量提高了77%。 研究了茄尼醇、对羟基苯甲酸、橘子皮提取物D、胡萝卜提取物E、烟草提取物对ARMTVS-32合成辅酶Q10的影响,结果表明这些物质对菌体合成辅酶Q10有一定促进作用,添加0.2g/L茄尼醇时,辅酶Q10含量提高了17%,达到了40.7mg/L;添加1.2g/L橘子皮提取物D时,辅酶Q10含量提高了13.8%,达到了39.6mg/L;添加0.5g/L胡萝卜提取物E时,辅酶Q10含量提高了25.3% ,达到了43.6mg/L;添加8g/L烟草提取物时,辅酶Q10含量提高了12.6%,达到了39.2mg/L。 Production of Coenzyme- Q10 (CoQ10) by fermentation is considered as a process with broad prospects.Quantitative Analysis of CoQ10 in the culture of microbe by TLC—UV spectrophotometry was developed, by using this method we got the strain Agrobacterium radiobacter,which was isolated from forest soil of southwest of China. The effect of the single factor on CoQ10-production ability of the strain was examined by liquid cultured, and its best optimum cultivation conditions were established by orthogonal method. The results showed that the optimum fermentation conditions were as following: carbon sources glucose 20g/L,sucrose 40g/L; nitrongen sources (NH4)2SO4 10g/L,maize liquid 30g/L;yeast extract 3g; K2HPO4 3g/L,MgSO4.7H2O 1g/L; initial pH was 7 and volume of medium(medium volume vs flask volume) was 50mL/500mL, incubating for 120h on a rotary shaker at 220 rpm and 28℃.Under these conditions, the biomass and CoQ10 concentration reached 50g/L and 20mg/L respectively. According to the biosynthesis mechanism of CoQ10 and breeding theory, CoQ10 over-production strains were screened by UV--NTG. mutation using Agrobacterium radiobacter No.50 as parent strain. A microbe-juice resistant mutant ARMTVS-32, which also could resist tobacco-juice, VK3 and streptomycin, was screened out from an agar plate. The CoQ10 content of ARMTVS-32 reached 36.8mg/L, which was 77% higher than the initial strain. In addition, We discussed the effects of some organic substrates on the synthesis of CoQ10 in ARMTVS-32. The results showed that solanesol, orange juice D, carrot juice E and tobacco juice could promote the CoQ10 accumulation in the cells. The CoQ10 content of ARMTVS-32 reached 40.7mg/L when added 0.2g/L solanesol,it reached 39.6mg/L when added 1.2g/L orange juice D,it reached 43.6mg/L when added 0.5g/L carrot juice E. it reached 39.2mg/L when added 8g/L tobacco juice.
Resumo:
生物质燃料乙醇是一种高度清洁的交通液体燃料,是减少温室气体排放,缓解大气污染的最佳技术选择。以非粮原料生产燃料乙醇可以在进行能源生产的同时保证粮食安全,有利于产业的可持续发展。在众多的非粮原料中,甘薯是我国开发潜力最大的生物质能源作物之一。我国占世界甘薯种植总面积和产量的90%。同时,甘薯的单位面积燃料乙醇产量远大于玉米和小麦。其成本是目前酒精中最低廉的,因此利用甘薯生产乙醇是发展生物质燃料乙醇的首要选择。目前采用薯类全原料主要采用分批发酵生产乙醇,其技术水平低,发酵强度低,一般在0.7-2.5g/(L•h),乙醇浓度低,甘薯发酵乙醇为6-8%(v/v),能耗高,环境负荷大,污染严重。针对上述问题,本文从菌株选育、原料预处理、中试放大、残糖成分分析等方面进行研究。 为了研究乙醇发酵生产规模扩大过程中,大型发酵罐底部高压条件下,CO2对酵母乙醇发酵的影响,我们通过CO2 加压的方法进行模拟试验,研究结果表明,发酵时间随压强的升高而逐渐延长,高压CO2 对乙醇发酵效率影响不大,在0.3 MPa 以下时,发酵效率均可达到90%以上。高压CO2 对发酵的抑制作用是高压和CO2 这两个因素联合作用的结果。高压CO2 条件下,酵母胞外酶和胞内重要酶类的酶活均表现出特征性。0.2 MPa 下,酶活性的变化趋势和0.1 MPa 条件下的较为一致。而0.3 MPa 下的酶活变化趋势与0.4 MPa 下的酶活更为接近。通过全基因表达分析发现在CO2 压力为0.3 MPa 下,乙醇发酵途径中多个基因表达量下调,同时海藻糖合成酶和热激蛋白基因表达量上调。 筛选耐高温的乙醇酵母菌株能够解决糖化温度和发酵温度不协调的矛盾,实现真正意义上的边糖化边发酵。高温发酵还能够降低发酵时的冷却成本,实现乙醇的周年生产。本研究筛选出一株高温发酵菌株Y-H1,进而我们对该菌株的胞外酶和胞内乙醇代谢重要酶类的酶活性进行了分析。结果表明Y-H1 能够在40 ℃条件下正常进行乙醇发酵,发酵33h,最终乙醇浓度达到10.7%(w/w),发酵效率达到90%以上。同时发酵液最终pH 在3.5 左右,显示菌株具有一定的耐酸性能力。同时观察到40 ℃下,菌株的胞外酶和胞内乙醇代谢重要酶类的酶活性发生了变化,乙醇发酵途径中关键酶基因表达下调,而海藻糖合成酶与热激蛋白基因表达量上调,这些结果为进一步研究酵母菌耐热调控机理提供了依据。 糖蜜是一种大规模工业生产乙醇的理想原料,本研究利用选育高浓度乙醇发酵菌株结合配套的发酵稳定剂,研究了糖蜜高浓度乙醇发酵情况。结果表明采用冷酸沉淀预处理糖蜜溶液,采用分批补料的发酵方式,乙醇浓度最高达到了10.26% (w/w),发酵时间为42 h。同时观察到在糖蜜发酵中,乙醛含量与乙醇浓度存在一定的相关性。 快速乙醇发酵对于缩短乙醇生产周期、降低乙醇生产成本、减少原料腐烂损失具有重要意义。本研究诱变和筛选得到了一株快速乙醇发酵菌株10232B。在优化后的发酵条件下,采用10L 发酵罐进行分批乙醇发酵,经过18h,乙醇的最终浓度达到88.5g/L,发酵效率93.6%,平均乙醇生产速度达到4.92 g/L/h。此菌株在保持较高乙醇生产浓度的同时,拥有快速生产乙醇的能力,适合作为快速乙醇发酵生产菌种。 由于鲜甘薯具有粘度大的特点,传统液化糖化处理很难在短时间内充分糖化原料;高粘度的醪液也难以进行管道输送,容易堵塞管路;同时,也会降低后续的乙醇发酵效率。 本文采用了快速粘度分析法对鲜甘薯糊化粘度特性进行了分析,进而对预处理条件进行了研究,在最佳预处理条件下,糖化2h 后,醪液葡萄糖值最高可达99.3,粘度4.5×104 mPa.s,而采用传统糖化工艺,醪液DE 值仅为85.8,粘度大于1.0×105 mPa.s。 此预处理方法也可用于快速糖化不加水的醪液。后续的乙醇发酵试验表明,通过此预处理方法获得的糖化醪液对乙醇发酵无负面影响。 在前期已实现了实验室水平的鲜甘薯燃料乙醇快速乙醇发酵基础上,进一步将发酵规模扩大到500L,在中试水平上对甘薯乙醇发酵进行了研究。结果表明在500L 中试规模,采用边糖化边发酵(SSF)工艺,在料液比为3∶1,发酵醪液最高粘度为6×104mPa.s 条件下,发酵37h,乙醇浓度达到了12.7%(v/v),发酵效率91%,发酵强度为2.7 g/(L•h)。与目前国内的薯类乙醇发酵生产技术水平具有明显的优越性。 为研究甘薯、木薯乙醇发酵中残糖的组成,采用了高效液相色谱—蒸发光散射检测法,对乙醇发酵残糖进行了分析。结果表明,甘薯、木薯乙醇发酵残糖均为寡聚糖,主要由葡萄糖、木糖、半乳糖、阿拉伯糖和甘露糖构成。随着发酵时间延长,寡聚糖中的葡萄糖、半乳糖、甘露糖可被缓慢的水解释放。提高糖化酶量仅在一定程度上降低残糖,过量的糖化酶反而会导致残糖增加。同时发现3, 5-二硝基水杨酸法不能准确测定甘薯、木薯乙醇发酵中的残总糖含量。进一步筛选了两株残糖降解菌株,对甘薯乙醇发酵残糖的降解利用率均达到了40%以上,而且还能显著降低发酵醪液粘度。经形态学和rRNA ITS 序列分析,确定这两株菌分别属于为木霉属和曲霉属黑曲霉组。 通过对以甘薯原料为代表的非粮原料发酵技术研究开发,以期形成乙醇转化率高,能耗低,生产效率高、季节适应性好,原料适应性广,经济性强,符合清洁生产机制的燃料乙醇高效转化技术,为具有我国特色的燃料乙醇发展模式提供技术支持。 Sweet potato is one of the major feedstock for the fuel ethanol production in China. The planting area and the yield in China take 90% of the world. Sweet potato is an efficient kind of energy crops. The energy outcome per area is higher than corn or wheat. And the manufacture cost of ethanol is the lowest, compared with corn and wheat. So sweet potato is the favorable crop for the bioethanol production in China. However, the low-level fermentation technology restricts the development of ethanol production by sweet potato, including slow ethanol production rate, low ethanol concentration and high energy cost. To solve these problems, we conducted research on the strain breeding, pretreatment, pilot fermentation test and residual saccharides analysis. To study the impact of hyperbaric condition at bottom of the large fermentor on yeast fermentation, high pressure carbon dioxide (CO2) was adopted to simulate the situation. The results showed that the fermentation was prolonged with the increasing pressure. The pressure of CO2 had little impact on the ethanol yield which could reach 90% under the pressure below 0.3 MPa. The inhibition was combined by the high pressure and CO2. Under the high CO2 pressure, the extracellular and important intracellular enzyme activities were different from those under normal state. The changes under 0.1 MPa and 0.2 MPa were similar. The changes under 0.3 MPa were closer to those under 0.4 MPa. The application of thermotolerance yeast could solve the problem of the inconsistent temperature between fermentation and saccharificaton and fulfill the real simultaneous saccharification and fermentation. And it could reduce the cooling cost. A thermotolerance strain Y-H1 was isolated in our research. It gave high ethanol concentration of 10.7%(w/w)at 40 ℃ for 33 h. The ethanol yield efficiency was over 90%. At 40 ℃, the extracellular and important intracellular enzyme activities of Y-H1 showed the difference with normal state, which may indicate its physiological changes at the high temperature. Molasses is another feedstock for industrial ethanol production. By our ethanol-tolerance strain and the regulation reagents, the fermentation with high ethanol concentration was investigated. In fed-batch mode combined with cold acid deposition, the highest ethanol concentration was 10.26% (w/w) for 42h. The aldehyde concentration in fermentation was found to be related to ethanol concentration. The development of a rapid ethanol fermentation strain of Zymomonas mobilis is essential for reducing the cost of ethanol production and for the timely utilization of fresh material that is easily decayed in the Chinese bioethanol industry. A mutant Z. mobilis strain, 10232B, was generated by UV mutagenesis. Under these optimized conditions, fermentation of the mutant Z. mobilis 10232B strain was completed in just 18 h with a high ethanol production rate, at an average of 4.92 gL-1h-1 per batch. The final maximum ethanol concentration was 88.5 gL-1, with an ethanol yield efficiency of 93.6%. This result illustrated the potential use of the mutant Z. mobilis 10232B strain in rapid ethanol fermentation in order to help reduce the cost of industrial ethanol production. As fresh sweet potato syrup shows high viscosity, it is hard to be fully converted to glucose by enzymes in the traditional saccharification process. The high-viscosity syrup is difficult to be transmitted in pipes, which may be easily blocked. Meanwhile it could also reduce the later ethanol fermentation efficiency. To solve these problems, effects of the pretreatment conditions were investigated. The highest dextrose equivalent value of 99.3 and the lowest viscosity of 4.5×104 mPa.s were obtained by the most favorable pretreatment conditions, while those of 85.8 and over 1.0×105 mPa.s was produced by traditional treatment conditions. The pretreatment could also be applied on the material syrup without adding water. The later experiments showed that the pretreated syrup had no negative effect on the ethanol fermentation and exhibited lower viscosity. The fuel ethanol rapid production from fresh sweet potato was enlarged in the 500L pilot scale after its fulfillment on the laboratory level. The optimal ratio of material to water was 3 to 1 in 500L fermentor. With low-temperature-cooking (85 ℃) using SSF, the Saccharomyces cerevisiae was able to produce ethanol 97.44 g/kg for 37h, which reached 92% of theoretical yield. The average ethanol production rate was 4.06 g/kg/h. And the maximum viscosity of syrup reached 6×104mPa.s. The results showed its superiority over current industrial ethanol fermentation. The compositions of the residual saccharides in the ethanol fermentation by sweet potato and cassava were analyzed by high performance liquid chromatography coupled with evaporative light-scattering detector. The results showed that all the residual saccharides were oligosaccharides, mainly composed of glucose, xylose, galactose, arabinose and mannose. The glucose, galactose and mannose could be slowly hydrolyzed from oligosaccharides in syrup during a long period. To increase the glucoamylase dosage could lower the residual saccharides to a certain extent. However, excess glucoamylase dosage led to more residual saccharides. And the method of 3, 5-dinitrosalicylic acid could not accurately quantify the residual total saccharides content. Two residual saccharides degrading strains were isolated, which could utilize 40% of total residual saccharide and lower the syrup viscosity. With the analysis of morphology and internal transcribed spacer sequence, they were finally identified as species of Trichoderma and Aspergillus niger.
Resumo:
Purpose: To estimate the biological risks to the immune system of the type of space radiation, 12C6+, encountered by cosmonauts during long-term travel in space. Materials and methods: The Kun-Ming strain mice were whole-body irradiated by 12C6+ ion with 0, 0.01, 0.05, 0.075, 0.2, 0.3, 0.5, 0.75, 1 or 2 Gy, at a dose rate of 1 Gy/min. At 35 days after irradiation, the thymus and spleen weights were measured, the natural killer (NK) cells activity of spleen was determined by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT), and the interferon-gamma (IFN-gamma) levels in serum and thymus were detected with enzyme-linked immunosorbent assays (ELISA). Results: The results showed that the thymus weight, IFN-gamma levels in serum and the activity of splenic NK-cells had significantly increased at a dose of 0.05 Gy. With further dose increase, the weight of spleen continued to increase but the weight of thymus, IFN-gamma level and NK-cells activity declined. Conclusions: These results suggest that the dose of 0.05 Gy irradiation has a stimulatory effect on mouse immunity; this effect declined with increasing dose.
Resumo:
The aim of this study was to evaluate the protective effects of different doses and administration modes of N-acetylcysteine (NAC) against X-ray-induced liver damage in mice. Kun-Ming mice were divided into four groups, each composed of six animals: two control groups and two NAC-treated groups. An acute study was carried out to determine alterations in lipid peroxidation (determined by measuring malondiadehyde (MDA) level), glutathione (GSH) content and superoxide dismutase (SOD) activity (assayed by colorimetric method), and DNA damage (characterized by DNA-single strand break using with comet assay) as well as cell apoptosis (measured by flow cytometry) at 12 h after irradiation. The results showed that there were dose-related decreases in MDA level, DNA damage and cell apoptosis, and dose-dependent increases in GSH content and SOD activity in all NAC-treated groups compared to control groups, indicating that pre-treatment or post-treatment with NAC significantly attenuates the acute liver damage caused by X-ray. In addition, significant positive correlations were observed between MDA level and DNA damage or cell apoptosis, implying that lipid peroxidation plays a major role in X-ray-induced liver injury. The data suggest that NAC exerts its radioprotective effect by counteracting accumulated reactive oxygen species in the liver through its properties as a direct antioxidant and a GSH precursor, when administered before or after X-ray irradiation.
Resumo:
The ovaries of Kun-Ming strain mice (3 weeks) were irradiated with different doses of C-12(6+) ion in the Bragg peak or the plateau region. At 10th day after irradiation, ovarian and uterine weights were measured: normal and atretic (identified with the oocyte to be degenerating or absent) primordial, primary and preantral follicles were identified in the largest cross-section of each ovary. Percentage (%) of normal follicles of each developmental stage of oogenesis was calculated. The data showed that compared to controls, there was a dose-related decrease in percentage of normal follicles in each developmental stage. And the weights of ovary and uterus were also reduced with doses of irradiation. Moreover, these effects were much more significant in the Bragg peak region and the region close to the Bragg peak than in the beam's entrance (the plateau region). Radiosensitivity varied in different follicle maturation stages. Primordial follicles, which are thought to be extremely sensitive to ionizing irradiation, were reduced by 86.6%, while primary and preantral follicles reduced only by 72.5% and 61.8% respectively, by exposure with 6 Gy of C-12(6+) ion in the Bragg peak region and the region close to the Bragg peak. The data suggested that due to their optimal depth-dose distribution in the Bragg peak region, heavy ions are ones of the best particles for radiotherapy of tumors located next of vital organs or/and surrounded by normal tissues, especially radiosensitive tissues such as gonads.
Resumo:
The present study was performed to obtain evidence of the radioprotective function of melatonin at different administration levels on carbon ion-induced mouse testicular damage. Outbred Kun-Ming strain mice were divided into six groups, each composed of eight animals: control group, melatonin alone group, irradiation group and three melatonin plus irradiation-treated groups. An acute study was carried out to determine alterations in DNA-single strand break, cell apoptosis, and oxidative stress parameters as well as histopathology in mouse testis 24 h after whole-body irradiation with a single dose of 4 Gy Tie results showed that pre-treatment and post-treatment with high-dose melatonin (10 mg/kg) both significantly alleviated carbon ion-induced acute testicular damage, a greater radioprotective effect being observed in the pre-treatment group. On the other hand, low-dose melatonin (1 mg/kg) had a limited radioprotective effect on irradiation-induced degeneration and DNA lesions in mouse testis. Taken together, the data suggest that prophylactic treatment with a higher dose of melatonin is probably advisable to protect against the effects of heavy-ion irradiation.
Resumo:
The aim of this work is to identify if there is sex specificity on C-12(6+) ion-induced oxidative damage in mouse lung at different time points. Kun-Ming mice were divided into two groups, each composed of six males and six females: control group and irradiation group with a single acute dose of 4 Gy. Animals were sacrificed at 2, 4 and 12 h respectively, there lungs were removed immediately, and the oxidative stress-related biomarkers were measured by Diagnostic Reagent Kits. The results showed that the relative activities of superoxide dismutase (4 h), catalase (2 h) and Se-dependent glutathione peroxidase (12 h) have significant changes (P < 0.05) between male groups and female groups, suggesting that the lungs of male mice are more sensitive to counteracting the oxidative challenge. Moreover, higher levels of malondiadehyde and lower contents of glutathione were also found in males, indicating that oxidative stress induced by C-12(6+) ion is pronounced in the lungs of males. We thought that these sex-responded differences may be attributed to the influence of sex hormones.
Resumo:
选用12C6+离子辐照诱变阿维菌素B1a产生菌ZJAV-A1,研究其诱变效应。实验结果表明,12C6+离子辐照剂量50Gy时致死率97%,正突变率最高可达到34.2%。通过12C6+离子诱变处理,结合平板培养基及斜面培养基的正突变菌株筛选,最终获得一株稳定性良好,阿维菌素B1a组分产量稳定在4460—4588μg/ml之间,较出发菌株提高11.1%—14.7%的突变株ZJAV-Y1-203。