999 resultados para Mesoporous matrix
Resumo:
A novel sol-gel process for preparing oxides and mixed oxides sols from precipitation and peptization process is reported in this article. Inorganic salts are used as raw materials in this study. It is found that the amount of acid has great influence on the stability and particle diameter distribution of the precursor sols. Ultrasonic treatment is used to prepare alumina sol at room temperature. The result of Al-27 NMR shows that there exist Al-13(7+) species in the sol. By controlling the sol particles with narrow particle diameter distribution, alumina, titania and silica-alumina (SA) materials with narrow mesoporous distribution are formed by regular packing of sol particles during gelation without using any templates. The results also show that the structure and particle diameter distribution of precursor sol determine the final materials' texture.
Resumo:
Thiol-functionalized mesoporous ethane-silicas with large pore were synthesized by co-condensation of 1,2-bis(trimethoxy-sily)ethane (BTME) with 3-mercaptopropyltrimethoxysilane (MPTMS) using nonionic oligomeric polymer C1H (OCH(2)-CH(2))(10)OH (Brij-76) or poly(alkylene oxide) block copolymer (P123) as surfactant in acidic medium. The results of powder X-ray diffraction (XRD), nitrogen gas adsorption, and transmission electron microscopy (TEM) show that the resultant materials have well-ordered hexagonal mesoscopic structure with uniform pore size distributions. (29)Si MAS NNR, (13)C CP-MAS NMR. FT-IR, and UV Raman spectroscopies confirm the attachment of thiol functionalities in the mesoporous ethane-sificas. The maximum content of the attached thiol group (-SH) in the mesoporous framework is 2.48mmol/g. The ordered mesoporous materials are efficient Hg(2+) adsorbents with almost every -SH site accessible to Hg(2+). In the presence of various kinds of heavy metal ions such as Hg(2+), Cd(2+), Zn(2+), Cu(2+) and Cr(3+), the materials synthesized using poly(alkylene oxide) block cooollxmier (Pluronic 123) g(2+), as surfactant show almost similar affinity to Hg(2+), Cd(2+), and Cr(3+), while the materials synthesized using ofigomeric polymer C(18)H(37)(OCH(2)CH(2))(10)OH (Brij-76) as surfactant exhibit high selectivity to Hg(2+). (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
This article reported the NaA zeolite membranes with high permeance synthesized with microwave heating method under different conditions: (1) on a macroporous substrate in gel, (11) on a mesoporous/macroporous (top-mesoporous-layer-modified macroporous) substrate in gel, and (111) on a mesoporous/macroporous substrate in sol. In general, the H-2 permeance of the NaA membranes by microwave heating in gel was usually at the level of 10(-6) mol s(-1) m(-2) Pa-1, much higher than that by the conventional hydrothermal synthesis. At similar H-2/C3H8 permselectivity. On the substrate modified mesoporous top layer, the H-2 permeance of the NaA membranes by microwave heating in gel or sol was further enhanced, while maintaining comparable H-2/C3H8 permselectivity, due to the prevention of penetration of the reagent into the pores of the macroporous substrate. Meanwhile, the synthesis took less time in sol than in gel on the mesoporous/macroporous substrate. The NaA membranes synthesized in sol had larger permeance than those in gel and underwent transformation in shorter time. The permeation of C3H8 suggested that there existed unwanted intercrystalline pores or defects in the membranes. © 2005 Elsevier B.V. All rights reserved.
Resumo:
Highly ordered mesoporous ethanesilica (MES) with 2D hexagonal structure was synthesized from 1,2-bis(trimethoxysilyl) ethane under neutral conditions for the first time. Divalent salts, such as NiCl2, MgCl2, ZnCl2, ZnSO4 and Zn(NO3)(2), were used to help the formation of the ordered mesostructure. The MES samples were characterized by powder X-ray diffraction, nitrogen sorption, transmission electron microscopy, FT-IR, C-13 and Si-29 solid-state NMR and thermal gravimetric analysis. A phase transition from a disordered wormhole-like structure to an ordered P6mm structure was observed upon the addition of inorganic salts. The pore size of the MES decreases from 4.7 to 3.9 nm with increasing content of the inorganic salts. Fluoride was also found to be important for the formation of ordered MES under neutral conditions.
Resumo:
Iron-substituted SBA-15 (Fe-SBA-15) materials have been synthesized via a simple direct hydrothermal method under weak acidic conditions. The powder X-ray diffraction (XRD), NZ sorption and transmission electron microscopy (TEM) characterizations show that the resultant materials have well-ordered hexagonal meso-structures. The diffused reflectance UV-vis and UV resonance Raman spectroscopy characterizations show that most of the iron ions exist as isolated framework species for calcined materials when the Fe/Si molar ratios are below 0.01 in the gel. The presence of iron species also has significant salt effects that can greatly improve the ordering of the mesoporous structure. Different iron species including isolated framework iron species, extraframework iron clusters and iron oxides are formed selectively by adjusting the pH values of the synthesis solutions and Fe/Si molar ratios. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
The surfactant assistant syntheses of sulfonic acid functionalized periodic mesoporous organosilicas with large pores are reported. A one-step condensation of tetramethoxysilane (TMOS) with 1,2-bis(trimethoxysilyi)ethane (BTME) and 3-mercaptopropyltrimethoxysilane (MPTMS) in highly acidic medium was performed in the presence of triblock copolymer Pluronic P123 and inorganic salt as additive. During the condensation process, thiol (-SH) group was in situ oxidized to sulfonic acid (-SO3H) by hydrogen peroxide (30 wt % H2O2). X-ray diffraction studies along with nitrogen and water sorption analyses reveal the formation of stable, highly hydrophobic, and well-ordered hexagonal mesoscopic structures in a wide range of -CH2CH2-concentrations in the mesoporous framework. The resultant materials were also investigated by Si-29 MAS and C-13 CP MAS NMR, thermogravimetric analyses, UV-Raman spectroscopy, and FT-IR spectroscopy. The role of the bridged organic group on the hydrothermal stability of the mesoporous materials was established, which revealed an enhancement in hydrothermal stability of the materials with incorporation of the bridged organic groups in the network. The catalytic performance of -SO3H functionalized mesoporous materials was investigated in the esterification of ethanol with acetic acid, and the results demonstrate that the ethane groups incorporated in the mesoporous framework have a positive influence on the catalytic behavior of the materials.
Resumo:
A method with carbon nanotubes functioning both as the adsorbent of solid-phase extraction (SPE) and the matrix for matrix assisted laser desorption/ ionization mass spectrometry (MALDI-MS) to analyze small molecules in solution has been developed. In this method, 10 muL suspensions of carbon nanotubes in 50% (vol/vol) methanol were added to the sample solution to extract analytes onto surface of carbon nanotubes because of their dramatic hydrophobicity. Carbon nanotubes in solution are deposited onto the bottom of tube with centrifugation. After removing the supernatant fluid, carbon nanotubes are suspended again with dispersant and pipetted directly onto the sample target of the MALDI-MS to perform a mass spectrometric analysis. It was demonstrated by analysis of a variety of small molecules that the resolution of peaks and the efficiency of desorption/ ionization on the carbon nanotubes are better than those on the activated carbon. It is found that with the addition of glycerol and sucrose to the dispersant, the intensity, the ratio of signal to noise (S/N), and the resolution of peaks for analytes by mass spectrometry increased greatly. Compared with the previously reported method by depositing sample solution onto thin layer of carbon nanotubes, it is observed that the detection limit for analytes can be enhanced about 10 to 100 times due to solid-phase extraction of analytes in solution by carbon nanotubes. An acceptable result of simultaneously quantitative analysis of three analytes in solution has been achieved. The application in determining drugs spiked into urine has also been realized. (C) 2004 American Society for Mass Spectrometry.
Resumo:
Oxidized carbon nanotubes are tested as a matrix for analysis of small molecules by matrix assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS). Compared with nonoxidized carbon nanotubes, oxidized carbon nanotubes facilitate sample preparation because of their higher solubility in water. The matrix layer of oxidized carbon nanotubes is much more homogeneous and compact than that of nonoxidized carbon nanotubes. The efficiency of desorption/ionization for analytes and the reproducibility of peak intensities within and between sample spots are greatly enhanced on the surface of oxidized carbon nanotubes. The advantage of the oxidized carbon nanotubes in comparison with alpha-cyano-4-hydroxycinnamic acid (CCA) and carbon nanotubes is demonstrated by MALDI-TOF-MS analysis of an amino acid mixture. The matrix is successfully used for analysis of synthetic hydroxypropyl P-cyclodextrin, suggesting a great potential for monitoring reactions and for product quality control. Reliable quantitative analysis of jatrorrhizine and palmatine with a wide linear range (1-100 ng/mL) and good reproducibility of relative peak areas (RSD less than 10 %) is achieved using this matrix. Concentrations of jatrorrhizine (8.65 mg/mL) and palmatine (10.4 mg/mL) in an extract of Coptis chinensis Franch are determined simultaneously using the matrix and a standard addition method. (c) 2005 American Society for Mass Spectrometry.
Resumo:
The use of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) for environmental analysis has been mainly focused on qualitative analysis of high-mass molecules, such as toxins, humic acid, and microorganisms. Herein,we describe a novel MALDI-TOF-MS method with a matrix of oxidized carbon nanotubes for analysis of low-mass compounds in environmental samples. A number of chemicals in the environment were qualitatively analyzed by the present method, and it was found that most of them, especially the highly polar chemicals, were measurable with high sensitivity. With the intrinsic ability to measure high-mass chemicals, this method can compensate for the current shortage of methods for environmental analysis for the measurement of highly polar or high-mass chemicals. For sample analysis, arsenic speciation in Chinese traditional medicines was qualified and diphenylolpropane in water samples was quantified. With the relatively high tolerance of the method to interfering molecules, a simple pretreatment or even no pretreatment could be employed before MS detection. Furthermore, this method can be employed in a high-throughput format.
Resumo:
Three chiral Mn(salen) complexes were immobilized into different mesoporous material via phenoxy group by a simplified method and they show high activity and enantioselectivity for asymmetric epoxidation of various substituted unfunctional olefins. The heterogeneous Mn(salen) catalysts show comparable ee values for asymmetric epoxidation of styrene and 6-cyano-2,2-dimethylchromene and much higher ee values for epoxidation of a-methylstyrene (heterogeneous 79.7% ee versus homogeneous 26.4% ee) and cis-beta-methylstyrene (heterogeneous 94.9% ee versus homogeneous 25.3% ee for cis-epoxide) than the homogeneous catalysts. These heterogeneous catalysts also remarkably alter the cis/trans ratio of epoxides for asymmetric epoxidation of cis-beta-methylstyrene (heterogeneous 21 versus homogeneous 0.38). The axial tether group does not make a big effect on ee values and the increase in ee value and change in cis/trans ratio are mainly attributed to the axial immobilization mode and the support effect of heterogeneous catalysts. The catalysts keep constant ee values for the recycle tests of eight times for asymmetric epoxidation of a-methylstyrene. And several possibilities were proposed to elucidate the difference in ee values of heterogeneous catalysts from homogeneous catalysts. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
A new post-grafting process, consisting of two steps of substrate preparation and sol - gel post-grafting, has been developed to prepare titanium-doped mesoporous SBA-15 material with a double-layered structure and locally concentrated titanium content at the inner pore surface. With this novel technique, the single phased and originally ordered mesostructures can be well conserved; in the conventional direct synthesis they can be partially damaged when the frameworks are doped with high content heteroatoms. Titanium species exist in an isolated, tetrahedral structure and are localized at the pore surface; this is beneficial to both reactant access and product release. Characterization with XRD, N-2 adsorption/desorption isotherms, HREM/ EDS, ICP, UV - Vis, and the newly developed UV - Raman spectroscopy confirm these results. Preliminary catalytic tests with the selective epoxidation of cyclohexene show good catalytic activity. Among them, sample TiSBA-15-10 with a Si : Ti molar ratio of 10 shows a TON value of 75 and a highest product ( epoxide) yield of 55%.