998 resultados para Mechanical Grinding
Resumo:
Styrene-b-(ethylene-co-1-butene)-b-styrene (SEBS) triblock copolymer functionalized with epsilon-caprolactam blocked allyl (3-isocyanate-4-tolyl) carbamate (SEBS-g-BTAI) was used to toughen polyamide 6 (PA6) via reactive blending. Compared to the PA6/SEBS blends, mechanical properties such as tensile strength, Young's modulus, especially Izod notched strength of PA6/SEBS-g-BTAI blends were improved distinctly. Both theological and FTIR results indicated a new copolymer formed by the reaction of end groups of PA6 and isocyanate group regenerated in the backbone of SEBS-g-BTAI. Smaller dispersed particle sizes with narrower distribution were found in PA6/SEBS-g-BTAI blends, via field emitted scanning electron microscopy (FESEM). The core-shell structures with PS core and PEB shell were also observed in the PA6/SEBS-g-BTAI blends via transmission electron microscopy (TEM), which might improve the toughening ability of the rubber particles.
Resumo:
The rheological, morphological and mechanical properties of LLDPE/PS blends with a combined catalyst, Me3SiCl and InCl3 center dot 4H(2)O, were studied in this work. The higher complex viscosity and storage modulus at low frequency were ascribed to the presence of graft copolymers, which were in situ formed during the mixing process. From the rheological experiments, the complex viscosity and storage modulus of reactive blends were higher than the physical blends. The dispersion of LLDPE particles of reactive blending becomes finer than that of physical blends, consistent with the rheological results. As a result of increased compatibility between LLDPE/PS, the mechanical properties of reactive blends show much higher tensile and Izod impact strength than those of physical blends.
Resumo:
Bulk novel cemented carbides (W1-xAlx)C-10.1 vol% Co (x = 0.2, 0.33, 0.4, 0.5) are prepared by mechanical alloying and hot-pressing sintering. Hot-pressing (HP) is used to fabricate the bulk bodies of the hard alloys. The novel cemented carbides have good mechanical properties compared with WC-Co. The density and operating cost of the novel material is much lower than a WC-Co system. The material is easy to process and the processing leads to nano-scaled, rounded, particles in the bulk material. The hardness of (W1-xAlx)C-10.1 vol% Co (x = 0.2, 0.33, 0.4, 0.5) hard material is 20.37, 21.16, 21.59 and 22.16 GPa, and the bending strength is 1257, 1238, 1211 and 1293 MPa, with the aluminum content varying from 20% to 50%. The relationship between the microstructure and the mechanical properties of the novel hard alloy is also discussed.
Resumo:
Enhancing the stability of plasticized poly(L-lactic acid) (PLLA) with poly (ethylene glycol) (PEG) is necessary for its practical application. In this study, plasticized PLLA (PLLA/PEG 80/20 wt/wt) was crosslinked under I-ray (Co-60) in the presence of triallyl isocyanurate (TALC) as crosslinking agent. FTIR analysis revealed that PLLA, PEG, and TALC formed a cocrosslinking structure. Crystallization behavior and mechanical properties of the crosslinked plasticized PLLA were investigated by differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WAXD), scanning electron microscopy (SEM), and tensile tests. Experimental results indicated that the crystallization behaviors of both PEG and PLLA in the blends were restrained after irradiation. The melting peak of PEG in the crystallized samples disappeared at a low irradiation doses about 10 kGy. Although PLLA still owned the behavior of crystallize, its cold crystallization temperature and glass transition temperature shifted to higher temperature. Mechanical properties of the plasticized PLLA were strengthened through crosslinking. Both yield strength and elastic modulus of the samples increased after crosslinking.
Resumo:
Bioactive SiO2-CaO-P2O5 gel (BAG) nanoparticles with 40 nm in diameter were synthesized by the sol-gel route and further modified via the ring-opening polymerization of lactide on the surface of particles. Surface modified BAG (mBAG) was introduced in poly(L-lactide) (PLLA) matrix as bioactive filler. The dispersibility of mBAG in PLLA matrix was much higher than that of rough BAG particles. Tensile strength of the mBAG/PLLA composite could be increased to 61.2 MPa at 2 wt% filler content from 53.4 MPa for pure PLLA. The variation of moduli of the BAG/PLLA and mBAG/PLLA composites always showed an enhancement tendency with the increasing content of filler loading. The SEM photographs of the fracture surfaces showed that mBAG could be homogeneously dispersed in the PLLA matrix, and the corrugated deformation could absorb the rupture energy effectively during the breaking of materials. In vitro bioactivity tests showed that both BAG and mBAG particles could endow the composites with ability of the calcium sediment in SBF, but the surface modification of BAG particles could weaken this capability to some extent. Biocompatibility tests showed that both BAG and mBAG particles could facilitate the attachment and proliferation of the marrow cells on the surface of the composite.
Resumo:
Microstructures and mechanical properties of the Mg-8Gd-xZn-0.4Zr (x = 0, 1 and 3 wt.%) alloys in the as-cast, as-extruded and extruded-T5 conditions, have been investigated. The peak-aged Mg-8Gd-1Zn-0.4Zr alloy during isothermal ageing at 423 K acquires highest mechanical properties, with the highest ultimate tensile strength and yield tensile strength of 314 and 217 MPa, respectively. Addition of Zn has obvious effect on age hardening responses, especially for 1 wt.% Zn addition. It is due to a uniform distribution of beta' phase which can impede the movement of dislocations. However, addition of 3 wt.% Zn to the Mg-8Gd-0.4Zr alloy leads to a precipitation of Mg3Zn3Gd2 phase (W-phase). This phase is incoherent with interface of the matrix and becomes cores of the fracture in tensile test at room or elevated temperature.
Resumo:
Die cast AZ91-xYmm (x = 0-0.8 wt.%) magnesium alloys with excellent tensile properties and corrosion resistance behavior were successfully prepared by a simple addition of yttrium-rich misch metal (Ymm) to AZ91. Influences of Ymm on the microstructure, mechanical properties and corrosion behavior of AZ91 were investigated. The results showed that addition of Ymm to die cast AZ91 alloy could re. ne the microstructure including primary alpha-Mg and eutectic beta-Mg17Al12. When the content of Ymm reached 0.8 wt.% a small quantity of Al2Y phase would form. The tensile properties were improved greatly with addition of Ymm to AZ91. The creep rate of the AZ91-Ymm alloys, tested at 150 degrees C/50MPa, was one order of magnitude lower than that of AZ91. When addition of Ymm was more than 0.3 wt.%, the salt-spray corrosion resistance of AZ91-Ymm alloys could be 30-40 times of that of AZ91. The improvement of corrosion resistance with addition of Ymm was confirmed by the results of electrochemical polarization experiments. Mechanism of the improvement of mechanical properties and corrosion behavior caused by Ymm was also discussed.
Resumo:
Die-cast Mg-4Al-4RE-0.4Mn (RE = Ce-rich mischmetal) and Mg-4Al-4La-0.4Mn magnesium alloys were prepared successfully and their microstructure, tensile and creep properties have been investigated. The results show that two binary Al-RE phases, Al11RE3 and Al2RE, are formed along grain boundaries in Mg-4Al-4RE-0.4Mn alloy, while the phase compositions of Mg-4Al-4La-0.4Mn alloy mainly consist of alpha-Mg phase and Al11La3 phase. And in Mg-4Al-4La-0.4Mn alloy the Al11La3 phase occupies a large grain boundary area and grows with complicated morphologies, which is characterized by scanning electron microscopy in detail. Changing the rare earth content of the alloy from Ce-rich mischmetal to lanthanum gives a further improvement in the tensile and creep properties, and the later could be attributed to the better thermal stability of Al11La3 phase in Mg-4Al-4La-0.4Mn alloy than that of Al11RE3 phase in Mg-4Al-4RE-0.4Mn alloy.
Resumo:
Mg-4Al-0.4Mn-xPr (x = 1, 2, 4 and 6 wt.%) magnesium alloys were prepared successfully by the high-pressure die-casting technique. The microstructures, mechanical properties, corrosion behavior as well as strengthening mechanism were investigated. The die-cast alloys were mainly composed of small equiaxed dendrites and the matrix. The fine rigid skin region was related to the high cooling rate and the aggregation of alloying elements, such as Pr. With the Pr content increasing, the alpha-Mg grain sizes were reduced gradually and the amounts of the Al2Pr phase and All, Pr-3 phase which mainly concentrated along the grain boundaries were increased and the relative volume ratio of above two phases was changed. Considering the performance-price ratio, the Pr content added around 4 wt.% was suitable to obtain the optimal mechanical properties which can keep well until 200 degrees C as well as good corrosion resistance. The outstanding mechanical properties were mainly attributed to the rigid casting surface layer, grain refinement, grain boundary strengthening obtained by an amount of precipitates as well as solid solution strengthening.
Resumo:
Microstructures and mechanical properties of the Mg-5Y-4Gd-xZn-0.4Zr alloys have been investigated. These results show that the Mg-5Y-4Gd-0.5Zn-0.4Zr alloy in the peak-aged condition exhibits the highest tensile strength, and the values of the ultimate tensile strength and yield tensile strength are 370 and 300 MPa, respectively. It is suggested that addition of 0.5% Zn has a great effect on age hardening response. The long periodic stacking structure has been found in these Zn-containing alloys, and the volume fraction of this phase increases with increasing Zn addition. This phase plays an important role in improvement of the mechanical properties, especially for the elongations. The beta' phase precipitates during the ageing process are responsible for the improvement of the mechanical properties of the alloys in the peak-aged condition.
Resumo:
Microstructures and mechanical properties of the Mg-7Y-4Gd-xZn-0.4Zr (x = 0.5, 1.5, 3, and 5 wt.%) alloys in the as-cast, as-extruded, and peak-aged conditions have been investigated by using optical microscopy, scanning electron microscope, X-ray diffraction, and transmission electron microscopy. It is found that the peak-aged Mg-7Y-4Gd-1.5Zn-0.4Zr alloys have the highest strength after aging at 220 A degrees C. The highest ultimate tensile strength and yield tensile strength are 418 and 320 MPa, respectively. The addition of 1.5 wt.% Zn to the based alloys results in a greater aging effect and better mechanical properties at both room and elevated temperatures. The improved mechanical properties are mainly ascribed to both a fine beta' phase and a long periodic stacking-ordered structure, which coexist together in the peak-aged alloys.
Resumo:
Poly(epsilon-caprolactone) (PCL), a saturated polyester, derived from ring-opening polymerization of epsilon-caprolactone, was chemically crosslinked with various amounts of benzoyl peroxide (BPO) by a two-step method by first evenly dispersing the BPO into the PCL matrix and then crosslinking at elevated temperature. The gel fraction increased with an increase in BPO content. The modified Charlesby-Pinner equation was used to calculate the ratio of chain scission and crosslinking. The results showed that both scission and crosslinking occurred, and that crosslinking predominated over scission. The number-average molecular weight between the crosslinks determined by the rubber elasticity theory using the hot set test showed a decrease with increasing BPO content. The melting temperature and crystallinity decreased with an increase in BPO content, and the crystallization temperature increased after crosslinking. Dynamic mechanical analysis results showed a decrease in the glass transition temperature as a result of chemical crosslinking of PCL. This was explained by the observed reduction in crystallinity and the increase in free volume due to restrictions in chain packing.
Resumo:
Poly(epsilon-caprolactone) was crosslinked by gamma radiation in the presence of triallyl isocyanurate. The influence of gamma-radiation crosslinking on the thermal and mechanical properties of poly(epsilon-caprolactone)/triallyl isocyanurate was investigated. Differential scanning calorimetry analyses showed differences between the first and second scans. Dynamic mechanical analysis showed an increase in the glass-transition temperature as a result of the radiation crosslinking of poly(epsilon-caprolactone). Thermogravimetric analysis showed that gamma-radiation crosslinking slightly improved the thermal stability of poly(epsilon-caprolactone). The 7 radiation also strongly influenced the mechanical properties. At room temperature, crosslinking by radiation did not have a significant influence on the Young's modulus and yield stress of poly(E-caprolactone). However, the tensile strength at break and the elongation at break generally decreased with an increase in the crosslinking level. When the temperature was increased above the melting point, the tensile strength at break, elongation at break, and Young's modulus of poly(epsilon-caprolactone) were also reduced with an increase in the crosslinking level. The yield stress disappeared as a result of the disappearance of the crystallites.
Resumo:
The rheological behavior and the dynamic mechanical properties of syndiotactic 1,2-polybutadiene (sPB) were investigated by a rotational rheometer (MCR-300) and a dynamic mechanical analyzer (DMA-242C). Rheological behavior of sPB-830, a sPB with crystalline degree of 20.1% and syndiotactic content of 65.1%, showed that storage modulus (G ') and loss modulus (G '') decreased, and the zero shear viscosity (eta(0)) decreased slightly with increasing temperature when measuring temperatures were lower than 160 degrees C. However, G ' and G '' increased at the end region of relaxation curves with increasing temperature and)10 increased with increasing temperature as the measuring temperatures were higher than 160 degrees C. Furthermore, critical crosslinked reaction temperature was detected at about 160 degrees C for sPB-830. The crosslinked reaction was not detected when test temperature was lower than 150 degrees C for measuring the dynamic mechanical properties of sample. The relationship between processing temperature and crosslinked reaction was proposed for the sPB-830 sample.
Resumo:
Microstructure and mechanical properties of as-cast and heat-treated Mg–12.3Zn–5.8Y–1.4Al (ZYA1261) alloy were investigated. The phase compositions of the as-cast alloy are -Mg, Mg3YZn6 (I-phase), Mg3Y2Zn3 (W-phase), Mg12YZn (Z-phase), Mg24Y5, MgZn and a small quantity of Al-containing phase. The phase compositions change with various heat treatment conditions. The highest Vickers hardness is obtained in the alloy aged at 200 ◦C for 5 h, the transmission electron microscopy indicated that fine scale Z-phase precipitates in the matrix. The tensile properties of the as-cast and heat-treated alloys were reported.