996 resultados para McAuley Water Street Mission.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nearly one fourth of new medicinal molecules are biopharmaceutical (protein, antibody or nucleic acid derivative) based. However, the administration of these compounds is not always that straightforward due to the fragile nature of aforementioned domains in GI-tract. In addition, these molecules often exhibit poor bioavailability when administered orally. As a result, parenteral administration is commonly preferred. In addition, shelf-life of these molecules in aqueous environments is poor, unless stored in low temperatures. Another approach is to bring these molecules to anhydrous form via lyophilization resulting in enhanced stability during storage. Proteins cannot most commonly be freeze dried by themselves so some kind of excipients are nearly always necessary. Disaccharides are commonly utilized excipients in freeze-dried formulations since they provide a rigid glassy matrix to maintain the native conformation of the protein domain. They also act as "sink"-agents, which basically mean that they can absorb some moisture from the environment and still help to protect the API itself to retain its activity and therefore offer a way to robust formulation. The aim of the present study was to investigate how four amorphous disaccharides (cellobiose, melibiose, sucrose and trehalose) behave when they are brought to different relative humidity levels. At first, solutions of each disaccharide were prepared, filled into scintillation vials and freeze dried. Initial information on how the moisture induced transformations take place, the lyophilized amorphous disaccharide cakes were placed in vacuum desiccators containing different relative humidity levels for defined period, after which selected analyzing methods were utilized to further examine the occurred transformations. Affinity to crystallization, water sorption of the disaccharides, the effect of moisture on glass transition and crystallization temperature were studied. In addition FT-IR microscopy was utilized to map the moisture distribution on a piece of lyophilized cake. Observations made during the experiments backed up the data mentioned in a previous study: melibiose and trehalose were shown to be superior over sucrose and cellobiose what comes to the ability to withstand elevated humidity and temperature, and to avoid crystallization with pharmaceutically relevant moisture contents. The difference was made evident with every utilized analyzing method. In addition, melibiose showed interesting anomalies during DVS runs, which were absent with other amorphous disaccharides. Particularly fascinating was the observation made with polarized light microscope, which revealed a possible small-scale crystallization that cannot be observed with XRPD. As a result, a suggestion can safely be made that a robust formulation is most likely obtained by utilizing either melibiose or trehalose as a stabilizing agent for biopharmaceutical freeze-dried formulations. On the other hand, more experiments should be conducted to obtain more accurate information on why these disaccharides have better tolerance for elevating humidities than others.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We compute the entropy and transport properties of water in the hydration layer of dipalmitoylphosphatidylcholine bilayer by using a recently developed theoretical scheme two-phase thermodynamic model, termed as 2PT method; S.-T. Lin et al., J. Chem. Phys. 119, 11792 (2003)] based on the translational and rotational velocity autocorrelation functions and their power spectra. The weights of translational and rotational power spectra shift from higher to lower frequency as one goes from the bilayer interface to the bulk. Water molecules near the bilayer head groups have substantially lower entropy (48.36 J/mol/K) than water molecules in the intermediate region (51.36 J/mol/K), which have again lower entropy than the molecules (60.52 J/mol/K) in bulk. Thus, the entropic contribution to the free energy change (T Delta S) of transferring an interface water molecule to the bulk is 3.65 kJ/mol and of transferring intermediate water to the bulk is 2.75 kJ/mol at 300 K, which is to be compared with 6.03 kJ/mol for melting of ice at 273 K. The translational diffusion of water in the vicinity of the head groups is found to be in a subdiffusive regime and the rotational diffusion constant increases going away from the interface. This behavior is supported by the slower reorientational relaxation of the dipole vector and OH bond vector of interfacial water. The ratio of reorientational relaxation time for Legendre polynomials of order 1 and 2 is approximately 2 for interface, intermediate, and bulk water, indicating the presence of jump dynamics in these water molecules. (C) 2010 American Institute of Physics. doi:10.1063/1.3494115]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Unsaturated clays are subject to osmotic suction gradients in geoenvironmental engineering applications and it therefore becomes important to understand the effect of these chemical concentration gradients on soil-water characteristic curves (SWCCs). This paper brings out the influence of induced osmotic suction gradient on the wetting SWCCs of compacted clay specimens inundated with sodium chloride solutions/distilled water at vertical stress of 6.25 kPa in oedometer cells. The experimental results illustrate that variations in initial osmotic suction difference induce different magnitudes of osmotic induced consolidation and osmotic consolidation strains thereby impacting the wetting SWCCs and equilibrium water contents of identically compacted clay specimens. Osmotic suction induced by chemical concentration gradients between reservoir salt solution and soil-water can be treated as an equivalent net stress component, (p(pi)) that decreases the swelling strains of unsaturated specimens from reduction in microstructural and macrostructural swelling components. The direction of osmotic flow affects the matric SWCCs. Unsaturated specimens experiencing osmotic induced consolidation and osmotic consolidation develop lower equilibrium water content than specimens experiencing osmotic swelling during the wetting path. The findings of the study illustrate the need to incorporate the influence of osmotic suction in determination of the matric SWCCs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structure of a cyclic water tetramer in channels (pores) formed by self-assembly of N6-methyl-5'-AMP center dot Na-2 molecules is described and a hypothetical model is proposed for growth of water clusters. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tiivistelmä: Escherichia coli bacteriofaagit merkkiaineena vesien kulkeutumistutkimuksissa

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tiivistelmä: Havaintotiheyden vaikutus valumavesien laatuarvioihin

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Low-humidity monoclinic lysozyme, resulting from a water-mediated transformation, has one of the lowest solvent contents (22% by volume) observed in a protein crystal. Its structure has been solved by the molecular replacement method and refined to an R value of 0.175 for 7684 observed reflections in the 10–1.75 Å resolution shell. 90% of the solvent in the well ordered crystals could be located. Favourable sites of hydration on the protein surface include side chains with multiple hydrogen-bonding centres, and regions between short hydrophilic side chains and the main-chain CO or NH groups of the same or nearby residues. Major secondary structural features are not disrupted by hydration. However, the free CO groups at the C terminii and, to a lesser extent, the NH groups at the N terminii of helices provide favourable sites for water interactions, as do reverse turns and regions which connect β-structure and helices. The hydration shell consists of discontinuous networks of water molecules, the maximum number of molecules in a network being ten. The substrate-binding cleft is heavily hydrated, as is the main loop region which is stabilized by water interactions. The protein molecules are close packed in the crystals with a molecular coordination number of 14. Arginyl residues are extensively involved in intermolecular hydrogen bonds and water bridges. The water molecules in the crystal are organized into discrete clusters. A distinctive feature of the clusters is the frequent occurrence of three-membered rings. The protein molecules undergo substantial rearrangement during the transformation from the native to the low-humidity form. The main-chain conformations in the two forms are nearly the same, but differences exist in the side-chain conformation. The differences are particularly pronounced in relation to Trp 62 and Trp 63. The shift in Trp 62 is especially interesting as it is also known to move during inhibitor binding.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of pumping an aquifer in an aquifer-water table aquitard system is considered, accounting for the elastic properties of both the aquifer and the aquitard, the gravity drainage in the aquitard and treating the water table as an unknown boundary. The coupled partial differential equations are nondimensionalised, yielding three principal parameters governing the problem. The numerical solution of these equations is obtained for a wide range of parameter values. Type curves are generated and their use is illustrated through a field application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using a modified Green's function technique the two well-known basic problems of scattering of surface water waves by vertical barriers are reduced to the problem of solving a pair of uncoupled integral equations involving the “jump” and “sum” of the limiting values of the velocity potential on the two sides of the barriers in each case. These integral equations are then solved, in closed form, by the aid of an integral transform technique involving a general trigonometric kernel as applicable to the problems associated with a radiation condition.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ab initio molecular orbital (MO) calculations with the 3-21G and 6-31G basis sets were performed on a series of ion-molecule and ion pair-molecule complexes for the H2O + LiCN system. Stabilisation energies (with counter-poise corrections), geometrical parameters, internal force constants and harmonic vibrational frequencies were evaluated for 16 structures of interest. Although the interaction energies are smaller, the geometries and relative stabilities of the monohydrated contact ion pair are reminiscent of those computed for the complexes of the individual ions. Thus, interaction of the oxygen lone pair with lithium leads to a highly stabilised C2v structure, while the coordination of water to the cyanide ion involves a slightly non-linear hydrogen bond. Symmetrical bifurcated structures are computed to be saddle points on the potential energy surface, and to have an imaginary frequency for the rocking mode of the water molecule. On optimisation the geometries of the solvent shared ion pair structures (e.g. Li+cdots, three dots, centered OH2cdots, three dots, centered CN−) revealed a proton transfer from the water molecule leading to hydrogen bonded forms such as Li-O-Hcdots, three dots, centered HCN. The variation in the force constants and harmonic frequencies in the various structures considered are discussed in terms of ion-molecular and ion pair-molecule interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article examines the changes in interparticle forces brought about on prolonged contact (1 year period) of a bentonite clay with artificial seawater. The study is undertaken with the purpose of identifying the physico-chemical factors that impart a nonswelling character to smectite clays deposited in marine environments. Results show that equilibration of the bentonite clay with artificial seawater (total pore salinity approximately 42 gL-1) for a 1 year period does not lead to any mineralogical changes in the clay specimens; however, their exchangeable cation positions become prominently dominated by magnesium ions. The consistency limits of the seawater-equilibrated bentonite was determined on stepwise leaching to lower salinities. The predominance of diffuse double-layer repulsion forces in the pore salt concentration range of 42 gL-1 to 1.1 gL-1 caused an increase in the liquid limits of the seawater-equilibrated bentonite specimens on reducing the salinity in the corresponding range (42 gL-1 to 1.1 gL-1). The attraction forces, however, prevail over the repulsion forces at salt concentrations <1.1 gL-1 and cause a decrease in liquid limit of the clay specimens with reduction in pore salinity, which is typical of nonswelling clays. The attraction forces cause aggregation of the clay unit layers into domains that break down on sodium saturation of the clay specimens. It is inferred that the physico-chemical factors responsible for the nonswelling character of the seawater-equilibrated bentonite specimens at pore salt concentrations below 1.1 gL-1 are inadequate to explain the nonswelling character of smectite-rich Ariake marine clays. The lower consistency limits of the Ariake marine clays in comparison to the nonswelling character, seawater-equilibrated bentonite specimens is attributed to a relative deficiency of interparticle forces in the Ariake marine clay.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tiivistelmä: Ilman rikkilaskeuma ja järvien happamoituminen Suomessa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Cambodia, water has a special purpose as a source of life and livelihoods. Along with agriculture, fishing and forest use, industry, hydropower, navigation and tourism compete for the water resources. When rights and responsibilities related to essential and movable water are unclear, conflicts emerge easily. Therefore, water management is needed in order to plan and control the use of water resources. The international context is characterized by the Mekong River that flows through six countries. All of the countries by the river have very different roles and interests already depending on their geographical location. At the same time, water is also a tool for cooperation and peace. Locally, the water resources and related livelihoods create base for well-being, for economical and human resources in particular. They in turn are essential for the local people to participate and defend their rights to water use. They also help to construct the resource base of the state administration. Cambodia is highly dependent on the Mekong River. However, Cambodia has a volatile history whose effects can be seen for example in population structure, once suspended public institutions and weakened trust in the society. Relatively stable conditions came to the country as late as in the 1990s, therefore Cambodia for example has a weak status within the Mekong countries. This Master s thesis forms international, national and local interest groups of water use and analyzes their power relations and resources to affect water management. The state is seen as the salient actor as it has the formal responsibility of the water resources and of the coordination between the actions of different levels. In terms of water use this study focuses on production, in management on planning and in power relations on the resources. Water resources of Cambodia are seen consisting of the Mekong River and Tonle Sap Lake and the time span of the study is between the years 1991 and 2006. The material consists of semi-structured interviews collected during summer 2006 in Finland and in Cambodia as well as of literature and earlier studies. The results of the study show that the central state has difficulties to coordinate the actions of different actors because of its resource deficit and internal conflicts. The lessons of history and the vested interests of the actors of the state make it difficult to plan and to strengthen legislation. It seems that the most needed resources at the central state level are intangible as at the village level instead, the tangible resources (fulfilling the basic needs) are primarily important. The local decision-making bodies, NGOs and private sector mainly require legislation and legitimacy to support their role. However, the civil society and the international supporters are active and there are possibilities for new cooperation networks. Keywords: Water management, resources, participation, Cambodia, Mekong