890 resultados para Mbm, meat and bone meal
Resumo:
AIM Pharmacological inhibitors of prolyl hydroxylases, also termed hypoxia-mimetic agents (HMAs), when repeatedly injected can support angiogenesis and bone regeneration. However, the possible role of HMA loaded onto bone substitutes to support angiogenesis and bone regeneration under diabetic condition is unknown. The capacity of HMA loaded onto deproteinized bovine bone mineral (DBBM) to support angiogenesis and bone formation was examined in diabetic Wistar rats. METHODS Diabetes was induced by intraperitoneal injection of streptozotocin. The HMA dimethyloxalylglycine (DMOG) and desferrioxamine (DFO) were lyophilized onto DBBM. Calvarial defects were created with a trephine drill and filled with the respective bone substitutes. After 4 weeks of healing, the animals were subjected to histological and histomorphometric analysis. RESULTS In this report, we provide evidence that DMOG loaded onto DBBM can support angiogenesis in vivo. Specifically, we show that DMOG increased the vessel area in the defect site to 2.4% ± 1.3% compared with controls 1.1% ± 0.48% (P = 0.012). There was a trend toward an increased vessel number in the defect site with 38.6 ± 17.4 and 31.0 ± 10.3 in the DMOG and the control group (P = 0.231). The increase in angiogenesis, however, did not translate into enhanced bone formation in the defect area with 9.2% ± 7.1% and 8.4% ± 5.6% in DMOG and control group, respectively. No significant changes were caused by DFO. CONCLUSIONS The results suggest that DMOG loaded onto DBBM can support angiogenesis, but bone formation does not increase accordingly in a type 1 diabetic rat calvarial defect model at the indicated time point.
Resumo:
Background: Bernese mountain dogs are reported to have a shorter life expectancy than other breeds. A Major reason for this has been assigned to a high tumour prevalence, especially of histiocytic sarcoma. The efforts made by the breeding clubs to improve the longevity with the help of genetic tests and breeding value estimations are impeded by insufficiently reliable diagnoses regarding the cause of death. The current standard for post mortem examination in animals is performance of an autopsy. In human forensic medicine, imaging modalities, such as computed tomography and magnetic resonance imaging, are used with increasing frequency as a complement to autopsy. The present study investigates, whether post mortem computed tomography in combination with core needle biopsy is able to provide a definitive diagnosis of histiocytic sarcoma. For this purpose we have analysed the results of post mortem computed tomography and core needle biopsy in eleven Bernese mountain dogs. In the subsequent autopsy, every dog had a definitive diagnosis of histiocytic sarcoma, based on immunohistochemistry. Results: Computed tomography revealed space-occupying lesions in all dogs. Lesion detection by post mortem computed tomography was similar to lesion detection in autopsy for lung tissue (9 cases in computed tomography / 8 cases in autopsy), thoracic lymph nodes (9/8), spleen (6/7), kidney (2/2) and bone (3/3). Hepatic nodules, however, were difficult to detect with our scanning protocol (2/7). Histology of the core needle biopsies provided definitive diagnoses of histiocytic sarcoma in ten dogs, including confirmation by immunohistochemistry in six dogs. The biopsy samples of the remaining dog did not contain any identifiable neoplastic cells. Autolysis was the main reason for uncertain histological diagnoses. Conclusions: Post mortem computed tomography is a fast and effective method for the detection of lesions suspicious for histiocytic sarcoma in pulmonary, thoracic lymphatic, splenic, osseous and renal tissue. Optimization of the procedure regarding the scanning protocol and tissue sample size and number will improve the accuracy of the method. Keywords: Post mortem computed tomography, Core needle biopsy, Bernese mountain dog, Histiocytic sarcoma, Autopsy
Resumo:
Objectives Pharyngeal arches develop in the head and neck regions, and give rise to teeth, oral jaws, the hyoid bone, operculum, gills, and pharyngeal jaws in teleosts. In this study, the expression patterns of genes in the sonic hedgehog (shh), wnt, ectodysplasin A (eda), and bone morphogenetic protein (bmp) pathways were investigated in the pharyngeal arches of Haplochromis piceatus, one of the Lake Victoria cichlids. Furthermore, the role of the shh pathway in pharyngeal arch development in H. piceatus larvae was investigated. Methods The expression patterns of lymphocyte enhancer binding factor 1 (lef1), ectodysplasin A receptor (edar), shh, patched 1 (ptch1), bmp4, sp5 transcription factor (sp5), sclerostin domain containing 1a (sostdc1a), and dickkopf 1 (dkk1) were investigated in H. piceatus larvae by in situ hybridization. The role of the shh pathway was investigated through morphological phenotypic characterization after its inhibition. Results We found that lef1, edar, shh, ptch1, bmp4, dkk1, sostdc1a, and sp5 were expressed not only in the teeth, but also in the operculum and gill filaments of H piceatus larvae. After blocking the shh pathway using cyclopamine, we observed ectopic shh expression and the disappearance of ptch1 expression. After six weeks of cyclopamine treatment, an absence of teeth in the oral upper jaws and a poor outgrowth of premaxilla, operculum, and gill filaments in juvenile H. piceatus were observed. Conclusions These results suggest that the shh pathway is important for the development of pharyngeal arch derivatives such as teeth, premaxilla, operculum, and gill filaments in H. piceatus.
Resumo:
The correspondence of the state of alignment of macromolecules in biomimetic materials and natural tissues is demonstrated by investigating a mechanism of electrical polarity formation: An in vitro grown biomimetic FAp/gelatin composite is investigated for its polar properties by second harmonic (SHGM) and scanning pyroelectric microscopy (SPEM). Hexagonal prismatic seed crystals formed in gelatin gels represent a monodomain polar state, due to aligned mineralized gelatin molecules. Later growth stages, showing dumbbell morphologies, develop into a bipolar state because of surface recognition by gelatin functionality: A reversal of the polar alignment of macromolecules, thus, takes place close to that basal plane of the seed. In natural hard tissues (teeth and bone investigated by SPEM) and the biomimetic FAp/gelatin composite, we find a surprising analogy in view of growth-induced states of polarity: The development of polarity in vivo and in vitro can be explained by a Markov-type mechanism of molecular recognition during the attachment of macromolecules.
Resumo:
Laser irradiation has numerous favorable characteristics, such as ablation or vaporization, hemostasis, biostimulation (photobiomodulation) and microbial inhibition and destruction, which induce various beneficial therapeutic effects and biological responses. Therefore, the use of lasers is considered effective and suitable for treating a variety of inflammatory and infectious oral conditions. The CO2 , neodymium-doped yttrium-aluminium-garnet (Nd:YAG) and diode lasers have mainly been used for periodontal soft-tissue management. With development of the erbium-doped yttrium-aluminium-garnet (Er:YAG) and erbium, chromium-doped yttrium-scandium-gallium-garnet (Er,Cr:YSGG) lasers, which can be applied not only on soft tissues but also on dental hard tissues, the application of lasers dramatically expanded from periodontal soft-tissue management to hard-tissue treatment. Currently, various periodontal tissues (such as gingiva, tooth roots and bone tissue), as well as titanium implant surfaces, can be treated with lasers, and a variety of dental laser systems are being employed for the management of periodontal and peri-implant diseases. In periodontics, mechanical therapy has conventionally been the mainstream of treatment; however, complete bacterial eradication and/or optimal wound healing may not be necessarily achieved with conventional mechanical therapy alone. Consequently, in addition to chemotherapy consisting of antibiotics and anti-inflammatory agents, phototherapy using lasers and light-emitting diodes has been gradually integrated with mechanical therapy to enhance subsequent wound healing by achieving thorough debridement, decontamination and tissue stimulation. With increasing evidence of benefits, therapies with low- and high-level lasers play an important role in wound healing/tissue regeneration in the treatment of periodontal and peri-implant diseases. This article discusses the outcomes of laser therapy in soft-tissue management, periodontal nonsurgical and surgical treatment, osseous surgery and peri-implant treatment, focusing on postoperative wound healing of periodontal and peri-implant tissues, based on scientific evidence from currently available basic and clinical studies, as well as on case reports.