975 resultados para Maximum


Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-resolution study of Antarctic planktonic foraminiferal assemblages (Ocean Drilling Program Site 690, Weddell Sea) shows that these microplankton underwent a stepwise series of changes during the Paleocene-Eocene thermal maximum (PETM). Initiation of this response coincides with the onset of the carbon isotope excursion (CIE) but precedes the benthic foraminiferal mass extinction. The "top-to-bottom" succession in the biotic response indicates that the surface ocean/atmosphere was affected before the deep sea. The earliest stage of the faunal response entailed a conspicuous turnover within the shallow-dwelling genus Acarinina and a succession of stratigraphic first appearances. The genus Morozovella, large (>180 µm) biserial planktonics, and A. wilcoxensis are all restricted to the lower CIE within this PETM section. Acarininid populations crashed as the ocean/climate system ameliorated during the CIE recovery, reflecting atypical surface water conditions. This transient decline in acarininids is paralleled by a marked increase in carbonate content of sediments. It is postulated that this interval of carbonate enrichment, and its unusual microfauna, reflects enhanced carbon storage within reservoirs of the global carbon cycle other than the marine carbonate system (sensu Broecker et al., 1993, doi:10.1029/93PA00423; Ravizza et al., 2001, doi:10.1029/2000PA000541).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We used a novel system of three continuous wave Doppler radars to successfully record the directivity of i) Strombolian explosions from the active lava lake of Erebus volcano, Antarctica, ii) eruptions at Stromboli volcano, Italy, and iii) a man-made explosion in a quarry. Erebus volcano contains a convecting phonolite lava lake, presumably connected to a magma chamber at depth. It is one of the few open vent volcanoes that allow a direct observation of source processes during explosions. Its lava lake is the source of frequent violent Strombolian explosions, caused by large gas bubbles bursting at the lake surface. The exact mechanism of these bubble bursts is unclear, as is the mechanism of the creation of the infrasound signal accompanying the explosions. We use the Doppler radar data to calculate the directivity of Strombolian eruptions at Erebus. This allows us to derive information about the expected type of infrasound source pattern (i.e. the role of a dipole in addition to the monopole signature) and the physical structure of the volcano. We recorded 10 large explosions simultaneously with three radars, enabling us to calculate time series of 3D directivity vectors (i.e. effectively 4D), which describe the direction of preferred expansion of the gas bubble during an explosion. Such directivity information allows a comparison to dipole infrasound radiation patterns recorded during similar explosions only a few weeks later. Video observations of explosions support our interpretation of the measurements. We conclude that at Erebus, the directivity of explosions is mainly controlled by random processes. Since the geometry of the uppermost conduit is assumed to have a large effect on the directivity of explosions, the results suggest a largely symmetrical uppermost conduit with a vertical axis of symmetry. For infrasound recordings, a significant dipole signature can be expected in addition to the predominant monopole signature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Paleocene/Eocene Thermal Maximum (PETM) was a transient interval of global warming ~55 m.y. ago associated with transformation of ecosystems and changes in carbon cycling. The event was caused by the input of massive amounts of CO2 or CH4 to the ocean-atmosphere system. Rapid shoaling of the lysocline and calcite compensation depth (CCD) is a predicted response of CO2 or CH4 input; however, the extent of this shoaling is poorly constrained. Investigation of Ocean Drilling Program (ODP) Sites 1209-1212 at Shatsky Rise, which lies along a depth transect, suggests a minimum lysocline shoaling of ~500 m in the tropical Pacific Ocean during the PETM. The sites also show evidence of CaCO3 dissolution within the sediment column, carbonate "burn-down" below the level of the carbon isotope excursion, and a predicted response to a rapid change in deepwater carbonate saturation. Close examination of several foraminiferal preservation proxies (i.e., fragmentation, benthic/planktonic foraminiferal ratios, coarse fraction, and CaCO3 content) and observations of foraminifers reveal that increased fragmentation levels most reliably predict intervals with visually impoverished foraminiferal preservation as a result of dissolution. Low CaCO3 content and high benthic/planktonic ratios also mirror intervals of poorest preservation.