977 resultados para Marseille, Gulf of
Resumo:
Although the Atlantic white-sided dolphin (Lagenorhynchus acutus) is one of the most common dolphins off New England, little has been documented about its diet in the western North Atlantic Ocean. Current federal protection of marine mammals limits the supply of animals for investigation to those incidentally caught in the nets of commercial fishermen with observers aboard. Stomachs of 62 L. acutus were examined; of these 62 individuals, 28 of them were caught by net and 34 were animals stranded on Cape Cod. Most of the net-caught L. acutus were from the deeper waters of the Gulf of Maine. A single stomach was from the continental slope south of Georges Bank. At least twenty-six fish species and three cephalopod species were eaten. The predominant prey were silver hake (Merluccius bilinearis), spoonarm octopus (Bathypolypus bairdii), and haddock (Melanogrammus aeglefinus). The stomach from a net-caught L. acutus on the continental slope contained 7750 otoliths of the Madeira lanternfish (Ceratoscopelus maderensis). Sand lances (Ammodytes spp.) were the most abundant (541 otoliths) species in the stomachs of stranded L. acutus. Seasonal variation in diet was indicated; pelagic Atlantic herring (Clupea harengus) was the most important prey in summer, but was rare in winter. The average length of fish prey was approximately 200 mm, and the average mantle length of cephalopod prey was approximately 50 mm.
Resumo:
Larvae of the genus Icelinus are collected more frequently than any other sculpin larvae in ichthyoplankton surveys in the Gulf of Alaska and Bering Sea, and larvae of the northern sculpin (Icelinus borealis) are commonly found in the ichthyofauna in both regions. Northern sculpin are geographically isolated north of the Aleutian Islands, Alaska, which allows for a definitive description of its early life history development in the Bering Sea. A combination of morphological characters, pigmentation, preopercular spine pattern, meristic counts, and squamation in later developmental stages is essential to identify Icelinus to the species level. Larvae of northern sculpin have 35–36 myomeres, pelvic fins with one spine and two rays, a bony preopercular shelf, four preopercular spines, 3–14 irregular postanal ventral melanophores, few, if any, melanophores ventrally on the gut, and in larger specimens, two rows of ctenoid scales directly beneath the dorsal fins extending onto the caudal peduncle. The taxonomic characters of the larvae of northern sculpin in this study may help differentiate northern sculpin larvae from its congeners, and other sympatric sculpin larvae, and further aid in solving complex systematic relationships within the family Cottidae.
Resumo:
Sand seatrout (Cynoscion arenarius) and silver seatrout (C. nothus) are both found within the immediate offshore areas of the Gulf of Mexico, especially around Texas; however information is limited on how much distributional overlap really occurs between these species. In order to investigate spatial and seasonal differences between species, we analyzed twenty years of bay and offshore trawl data collected by biologists of the Coastal Fisheries Division, Texas Parks and Wildlife Department. Sand seatrout and silver seatrout were distributed differently among offshore sampling areas, and salinity and water depth appeared to correlate with their distribution. Additionally, within the northernmost sampling area of the gulf waters, water depth correlated significantly with the presence of silver seatrout, which were found at deeper depths than sand seatrout. There was also an overall significant decrease in silver seatrout abundance during the summer season, when temperatures were at their highest, and this decrease may have indicated a migration farther offshore. Sand seatrout abundance had an inverse relationship with salinity and water depth offshore. In addition, sand seatrout abundance was highest in bays with direct passes to the gulf and correlated with corresponding abundance in offshore areas. These data highlight the seasonal and spatial differences in abundance between sand and silver seatrout and relate these differences to the hydrological and geological features found along the Texas coastline.
Resumo:
A 4500-year archaeological record of Pacific cod (Gadus macrocephalus) bones from Sanak Island, Alaska, was used to assess the sustainability of the modern fishery and the effects of this fishery on the size of fish caught. Allometric reconstructions of Pacific cod length for eight prehistoric time periods indicated that the current size of the nearshore, commercially fished Pacific cod stocks is statistically unchanged from that of fish caught during 4500 years of subsistence harvesting. This finding indicates that the current Pacific cod fishery that uses selective harvesting technolog ies is a sustainable commercial fishery. Variation in relative Pacific cod abundances provides further insights into the response of this species to punctuated changes in ocean climate (regime shifts) and indicates that Pacific cod stocks can recover from major environmental perturbations. Such palaeofisheries data can extend the short time-series of fisheries data (<50 yr) that form the basis for fisheries management in the Gulf of Alaska and place current trends within the context of centennial- or millennial-scale patterns.
Resumo:
Over 34,000 age 0–2 juvenile sablefish (Anoplopoma fimbria) were tagged and released in southeast Alaska waters during 1985–2005. The data set resulting from this tagging study was unusual because of its time span (20 years) and because age could be reliably inferred from release length (i.e., tagged and released fish were of known age); thus, age-specific movement patterns could be examined. The depth- and area-related recovery patterns supported the concepts that sablefish move to deeper water with age and migrate counterclockwise in the Gulf of Alaska. Availability to the fishery increased rapidly for fish of younger ages, peaked at age 5 to 6, and then gradually declined as sablefish moved deeper with age. Decreased availability with age may occur because of lower fishing effort in deep water and could have substantial implications for sablef ish stock assessments because “domeshaped” availability influences the reliability of abundance estimates. The area-related recovery pattern was not affected by year-class strength; i.e., there was no significant densitydependent relationship.
Resumo:
King mackerel (Scomberomorus cavalla) are ecologically and economically important scombrids that inhabit U.S. waters of the Gulf of Mexico (GOM) and Atlantic Ocean (Atlantic). Separate migratory groups, or stocks, migrate from eastern GOM and southeastern U.S. Atlantic to south Florida waters where the stocks mix during winter. Currently, all winter landings from a management-defined south Florida mixing zone are attributed to the GOM stock. In this study, the stock composition of winter landings across three south Florida sampling zones was estimated by using stock-specific otolith morphological variables and Fourier harmonics. The mean accuracies of the jackknifed classifications from stepwise linear discriminant function analysis of otolith shape variables ranged from 66−76% for sex-specific models. Estimates of the contribution of the Atlantic stock to winter landings, derived from maximum likelihood stock mixing models, indicated the contribution was highest off southeastern Florida (as high as 82.8% for females in winter 2001−02) and lowest off southwestern Florida (as low as 14.5% for females in winter 2002−03). Overall, results provided evidence that the Atlantic stock contributes a certain, and perhaps a significant (i.e., ≥50%), percentage of landings taken in the management-defined winter mixing zone off south Florida, and the practice of assigning all winter mixing zone landings to the GOM stock should
Resumo:
Environmental variability affects the distributions of most marine fish species. In this analysis, assemblages of rockfish (Sebastes spp.) species were defined on the basis of similarities in their distributions along environmental gradients. Data from 14 bottom trawl surveys of the Gulf of Alaska and Aleutian Islands (n=6767) were used. Five distinct assemblages of rockfish were defined by geographical position, depth, and temperature. The 180-m and 275-m depth contours were major divisions between assemblages inhabiting the shelf, shelf break, and lower continental slope. Another noticeable division was between species centered in southeastern Alaska and those found in the northern Gulf of Alaska and Aleutian Islands. The use of environmental variables to define the species composition of assemblages is different from the use of traditional methods based on clustering and nonparametric statistics and as such, environmentally based analyses should result in predictable assemblages of species that are useful for ecosystem-based management.
Resumo:
Six years of bottom-trawl survey data, including over 6000 trawls covering over 200 km2 of bottom area throughout Alaska’s subarctic marine waters, were analyzed for patterns in species richness, diversity, density, and distribution of skates. The Bering Sea continental shelf and slope, Aleutian Islands, and Gulf of Alaska regions were stratified by geographic subregion and depth. Species richness and relative density of skates increased with depth to the shelf break in all regions. The Bering Sea shelf was dominated by the Alaska skate (Bathyraja parmifera), but species richness and diversity were low. On the Bering Sea slope, richness and diversity were higher in the shallow stratum, and relative density appeared higher in subregions dominated by canyons. In the Aleutian Islands and Gulf of Alaska, species richness and relative density were generally highest in the deepest depth strata. The data and distribution maps presented here are based on species-level data collected throughout the marine waters of Alaska, and this article represents the most comprehensive summary of the skate fauna of the region published to date.
Resumo:
This study was designed to improve our understanding of transitions in the early life history and the distribution, habitat use, and diets for young-of-the-year (YOY) goosefish (Lophius americanus) and, as a result, their role in northeastern U.S. continental shelf ecosystems. Pelagic juveniles (>12 to ca. 50 mm total length [TL]) were distributed over most portions of the continental shelf in the Middle Atlantic Bight, Georges Bank, and into the Gulf of Maine. Most individuals settled by 50−85 mm TL and reached approximately 60−120 mm TL by one year of age. Pelagic YOY fed on chaetognaths, hyperiid amphipods, calanoid copepods, and ostracods, and benthic YOY had a varied diet of fishes and benthic crustaceans. Goosefish are widely scattered on the continental shelf in the Middle Atlantic Bight during their early life history and once settled, are habitat generalists, and thus play a role in many continental shelf habit
Resumo:
The diet of Steller sea lions (Eumetopias jubatus) was determined from 1494 scats (feces) collected at breeding (rookeries) and nonbreeding (haulout) sites in Southeast Alaska from 1993 to 1999. The most common prey of 61 species identified were walleye pollock (Theragra chalcogramma), Pacific herring (Clupea pallasii), Pacific sand lance (Ammodytes hexapterus), Pacific salmon (Salmonidae), arrowtooth flounder (Atheresthes stomias), rockfish (Sebastes spp.), skates (Rajidae), and cephalopods (squid and octopus). Steller sea lion diets at the three Southeast Alaska rookeries differed significantly from one another. The sea lions consumed the most diverse range of prey categories during summer, and the least diverse during fall. Diet was more diverse in Southeast Alaska during the 1990s than in any other region of Alaska (Gulf of Alaska and Aleutian Islands). Dietary differences between increasing and declining populations of Steller sea lions in Alaska correlate with rates of population change, and add credence to the view that diet may have played a role in the decline of sea lions in the Gulf of Alaska and Aleutian Islands.
Resumo:
The penpoint gunnel (Apodichthys flavidus) is a member of the perciform family Pholidae. Pholids, commonly referred to as gunnels, are eel-like fishes that inhabit the rocky intertidal and subtidal regions of the northern oceans and are often associated with macroalgae, such as Fucus spp. or kelp (Watson, 1996). Gunnels are ecologically important forage fishes that form part of the diet of birds and commercially important groundfish species (Hobson and Sealy, 1985; NMFS1; Golet et al., 2000). The diet of A. flavidus and other pholids comprises primarily harpactacoid copepods, gammarid amphipods, isopods, and other crustaceans (Cross, 1981). Apodichthys flavidus ranges along the west coast of North America from southern California to the Gulf of Alaska (Mecklenburg et al., 2002). Adult A. flavidus are distinguished from other pholids by their total vertebral counts, the presence of a thick and grooved first anal spine, a preanal length that is approximately 60% standard length (SL), and a dark green to light olive coloration (Yatsu, 1981). It is one of the largest pholids (up to 46 cm) and is important in the live fish trade for both home and public aquaria (Froese and Pauly2).
Resumo:
The variability in the supply of pink shrimp (Farfantepenaeus duorarum) postlarvae and the transport mechanisms of planktonic stages were investigated with field data and simulations of transport. Postlarvae entering the nursery grounds of Florida Bay were collected for three consecutive years at channels that connect the Bay with the Gulf of Mexico, and in channels of the Middle Florida Keys that connect the southeastern margin of the Bay with the Atlantic Ocean. The influx of postlarvae in the Middle Florida Keys was low in magnitude and varied seasonally and among years. In contrast, the greater postlarval influx occurred at the northwestern border of the Bay, where there was a strong seasonal pattern with peaks in influx from July through September each year. Planktonic stages need to travel up to 150 km eastward between spawning grounds (northeast of Dry Tortugas) and nursery grounds (western Florida Bay) in about 30 days, the estimated time of planktonic development for this species. A Lagrangian trajectory model was developed to estimate the drift of planktonic stages across the SW Florida shelf. The model simulated the maximal distance traveled by planktonic stages under various assumptions of behavior. Simulation results indicated that larvae traveling with the instantaneous current and exhibiting a diel behavior travel up to 65 km and 75% of the larvae travel only 30 km. However, the eastward distance traveled increased substantially when a larval response to tides was added to the behavioral variable (distance increased to 200 km and 85% of larvae traveled 150 km). The question is, when during larval development, and where on the shallow SW Florida shelf, does the tidal response become incorporated into the behavior of pink shrimp.
Resumo:
Estimates of the Q/B ratio and parameters of equations to 'predict' Q/B values for 116 fish stocks in the Gulf of Salamanca, Colombia are presented. A compilation of these estimates available for Caribbean Sea fishes (264 stocks) is also provided for comparison purposes. General trends in the value of Q/B resulting from differences in the equation and parameter values used are briefly discussed.
Resumo:
Rougheye rockfish (Sebastes aleutianus) and shortraker rockfish (Sebastes borealis) were collected from the Washington coast, the Gulf of Alaska, the southern Bering Sea, and the eastern Kamchatka coast of Russia (areas encompassing most of their geographic distribution) for population genetic analyses. Using starch gel electrophoresis, we analyzed 1027 rougheye rockfish and 615 shortraker rockfish for variation at 29 proteincoding loci. No genetic heterogeneity was found among shortraker rockfish throughout the sampled regions, although shortraker in the Aleutian Islands region, captured at deeper depths, were found to be significantly smaller in size than the shortraker caught in shallower waters from Southeast Alaska. Genetic analysis of the rougheye rockfish revealed two evolutionary lineages that exist in sympatry with little or no gene f low between them. When analyzed as two distinct species, neither lineage exhibited heterogeneity among regions. Sebastes aleutianus seems to inhabit waters throughout the Gulf of Alaska and more southern waters, whereas S. sp. cf. aleutianus inhabits waters throughout the Gulf of Alaska, Aleutian Islands, and Asia. The distribution of the two rougheye rockfish lineages may be related to depth where they are sympatric. The paler color morph, S. aleutianus, is found more abundantly in shallower waters and the darker color morph, Sebastes sp. cf. aleutianus, inhabits deeper waters. Sebastes sp. cf. aleutianus, also exhibited a significantly higher prevalence of two parasites, N. robusta and T. trituba, than did Sebastes aleutianus, in the 2001 samples, indicating a possible difference in habitat and (or) resource use between the two lineages.
Resumo:
The growth rate of Steller sea lion (Eumetopias jubatus) pups was studied in southeast Alaska, the Gulf of Alaska, and the Aleutian Islands during the first six weeks after birth. The Steller sea lion population is currently stable in southeast Alaska but is declining in the Aleutian Islands and parts of the Gulf of Alaska. Male pups (22.6 kg [±2.21 SD]) were significantly heavier than female pups (19.6 kg [±1.80 SD]) at 1−5 days of age, but there were no significant differences among rookeries. Male and female pups grew (in mass, standard length, and axillary girth) at the same rate. Body mass and standard length increased at a faster rate for pups in the Aleutian Islands and the western Gulf of Alaska (0.45−0.48 kg/day and 0.47−0.53 cm/day, respectively) than in southeast Alaska (0.23 kg/day and 0.20 cm/day). Additionally, axillary girth increased at a faster rate for pups in the Aleutian Islands (0.59 cm/ day) than for pups in southeast Alaska v(0.25 cm/day). Our results indicate a greater maternal investment in male pups during gestation, but not during early lactation. Although differences in pup growth rate occurred among rookeries, there was no evidence that female sea lions and their pups were nutritionally stressed in the area of population decline