947 resultados para Marital Disruption
Resumo:
Organotypic models may provide mechanistic insight into colorectal cancer (CRC) morphology. Three-dimensional (3D) colorectal gland formation is regulated by phosphatase and tensin homologue deleted on chromosome 10 (PTEN) coupling of cell division cycle 42 (cdc42) to atypical protein kinase C (aPKC). This study investigated PTEN phosphatase-dependent and phosphatase-independent morphogenic functions in 3D models and assessed translational relevance in human studies. Isogenic PTEN-expressing or PTEN-deficient 3D colorectal cultures were used. In translational studies, apical aPKC activity readout was assessed against apical membrane (AM) orientation and gland morphology in 3D models and human CRC. We found that catalytically active or inactive PTEN constructs containing an intact C2 domain enhanced cdc42 activity, whereas mutants of the C2 domain calcium binding region 3 membrane-binding loop (M-CBR3) were ineffective. The isolated PTEN C2 domain (C2) accumulated in membrane fractions, but C2 M-CBR3 remained in cytosol. Transfection of C2 but not C2 M-CBR3 rescued defective AM orientation and 3D morphogenesis of PTEN-deficient Caco-2 cultures. The signal intensity of apical phospho-aPKC correlated with that of Na/H exchanger regulatory factor-1 (NHERF-1) in the 3D model. Apical NHERF-1 intensity thus provided readout of apical aPKC activity and associated with glandular morphology in the model system and human colon. Low apical NHERF-1 intensity in CRC associated with disruption of glandular architecture, high cancer grade, and metastatic dissemination. We conclude that the membrane-binding function of the catalytically inert PTEN C2 domain influences cdc42/aPKC-dependent AM dynamics and gland formation in a highly relevant 3D CRC morphogenesis model system.
Resumo:
Context. Near-Earth asteroid (25143) Itokawa was visited by the Hayabusa spacecraft in 2005, resulting in a highly detailed shape and surface topography model. This model has led to several predictions for the expected radiative torques on this asteroid, suggesting that its spin rate should be decelerating. Aims. To detect changes in rotation rate that may be due to YORP-induced radiative torques, which in turn may be used to investigate the interior structure of the asteroid. Methods. Through an observational survey spanning 2001 to 2013 we obtained rotational lightcurve data at various times over the last five close Earth-approaches of the asteroid. We applied a polyhedron-shape-modelling technique to assess the spin-state of the asteroid and its long term evolution. We also applied a detailed thermophysical analysis to the shape model determined from the Hayabusa spacecraft. Results. We have successfully measured an acceleration in Itokawa's spin rate of dω/dt = (3.54 ± 0.38) × 10 rad day, equivalent to a decrease of its rotation period of ~45 ms year. From the thermophysical analysis we find that the centre-of-mass for Itokawa must be shifted by ~21 m along the long-axis of the asteroid to reconcile the observed YORP strength with theory. Conclusions. This can be explained if Itokawa is composed of two separate bodies with very different bulk densities of 1750 ± 110 kg m and 2850 ± 500 kg m, and was formed from the merger of two separate bodies, either in the aftermath of a catastrophic disruption of a larger differentiated body, or from the collapse of a binary system. We therefore demonstrate that an observational measurement of radiative torques, when combined with a detailed shape model, can provide insight into the interior structure of an asteroid. Futhermore, this is the first measurement of density inhomogeneity within an asteroidal body, that reveals significant internal structure variation. A specialised spacecraft is normally required for this.
Resumo:
An intriguing feature of mitochondrial complex I from several species is the so-called A/D transition, whereby the idle enzyme spontaneously converts from the active (A) form to the de-active (D) form. The A/D transition plays an important role in tissue response to the lack of oxygen and hypoxic deactivation of the enzyme is one of the key regulatory events that occur in mitochondria during ischaemia. We demonstrate for the first time that the A/D conformational change of complex I does not affect the macromolecular organisation of supercomplexes in vitro as revealed by two types of native electrophoresis. Cysteine 39 of the mitochondrially-encoded ND3 subunit is known to become exposed upon de-activation. Here we show that even if complex I is a constituent of the I + III + IV (S) supercomplex, cysteine 39 is accessible for chemical modification in only the D-form. Using lysine-specific fluorescent labelling and a DIGE-like approach we further identified two new subunits involved in structural rearrangements during the A/D transition: ND1 (MT-ND1) and 39 kDa (NDUFA9). These results clearly show that structural rearrangements during de-activation of complex I include several subunits located at the junction between hydrophilic and hydrophobic domains, in the region of the quinone binding site. De-activation of mitochondrial complex I results in concerted structural rearrangement of membrane subunits which leads to the disruption of the sealed quinone chamber required for catalytic turnover.
Resumo:
Background: A previous review showed that high stress increases the risk of occupational injury by three- to five-fold. However, most of the prior studies have relied on short follow-ups. In this prospective cohort study we examined the effect of stress on recorded hospitalised injuries in an 8-year follow-up.
Methods: A total of 16,385 employees of a Finnish forest company responded to the questionnaire. Perceived stress was measured with a validated single-item measure, and analysed in relation recorded hospitalised injuries from 1986 to 2008. We used Cox proportional hazard regression models to examine the prospective associations between work stress, injuries and confounding factors.
Results: Highly stressed participants were approximately 40% more likely to be hospitalised due to injury over the follow-up period than participants with low stress. This association remained significant after adjustment for age, gender, marital status, occupational status, educational level, and physical work environment.
Conclusions: High stress is associated with an increased risk of severe injury.
Resumo:
Purpose: To investigate, for the first time, the influence of pharmacist intervention and the use of a patient information leaflet on self-application of hydrogel-forming microneedle arrays by human volunteers without the aid of an applicator device.
Methods: A patient information leaflet was drafted and pharmacist counselling strategy devised. Twenty human volunteers applied 11 × 11 arrays of 400 μm hydrogel-forming microneedle arrays to their own skin following the instructions provided. Skin barrier function disruption was assessed using transepidermal water loss measurements and optical coherence tomography and results compared to those obtained when more experienced researchers applied the microneedles to the volunteers or themselves.
Results: Volunteer self-application of the 400 μm microneedle design resulted in an approximately 30% increase in skin transepidermal water loss, which was not significantly different from that seen with self-application by the more experienced researchers or application to the volunteers. Use of optical coherence tomography showed that self-application of microneedles of the same density (400 μm, 600 μm and 900 μm) led to percentage penetration depths of approximately 75%, 70% and 60%, respectively, though the diameter of the micropores created remained quite constant at approximately 200 μm. Transepidermal water loss progressively increased with increasing height of the applied microneedles and this data, like that for penetration depth, was consistent, regardless of applicant.
Conclusion: We have shown that hydrogel-forming microneedle arrays can be successfully and reproducibly applied by human volunteers given appropriate instruction. If these outcomes were able to be extrapolated to the general patient population, then use of bespoke MN applicator devices may not be necessary, thus possibly enhancing patient compliance.
Resumo:
Patulin (PAT) is a mycotoxin produced by various species of fungi, with Penicillium expansum being the most commonly occurring. Apples and apple products are the main sources of PAT contamination. This mycotoxin has been shown to induce toxic effects in animals, a few of which include reproductive toxicity and interference with the endocrine system. Here the endocrine disrupting potential of PAT has been investigated in vitro to identify disruption at the level of oestrogen, androgen, progestagen and glucocorticoid nuclear receptor transcriptional activity, and to assess interferences in estradiol, testosterone and progesterone steroid hormone production. At the receptor level, 0.5-5000ng/ml (0.0032-32μM) PAT did not appear to induce any specific (ant) agonistic responses in reporter gene assays (RGAs); however, nuclear transcriptional activity was affected. A >6 fold increase in the glucocorticoid receptor transcriptional activity was observed following treatment with 5000ng/ml PAT in the presence of cortisol. At the hormone production level, despite cytotoxicity being observed after treatment with 5000ng/ml PAT, estradiol levels had increased >2 fold. At 500ng/ml PAT treatment, an increase in progesterone and a decrease in testosterone production were observed. The findings of this study could be considered in assessing the health risks following exposure to PAT.
Resumo:
Forming peer alliances to share and build knowledge is an important aspect of community arts practice, and these co-creation processes are increasingly being mediated by the internet. This paper offers guidance for practitioners who are interested in better utilising the internet to connect, share, and make new knowledge. It argues that new approaches are required to foster the organising activities that underpin online co-creation, building from the premise that people have become increasingly networked as individuals rather than in groups (Rainie and Wellman 2012: 6), and that these new ways of connecting enable new modes of peer-to-peer production and exchange. This position advocates that practitioners move beyond situating the internet as a platform for dissemination and a tool for co-creating media, to embrace its knowledge collaboration potential.
Drawing on a design experiment I developed to promote online knowledge co-creation, this paper suggests three development phases – developing connections, developing ideas, and developing agility – to ground six methods. They are: switching and routing, engaging in small trades of ideas with networked individuals; organising, co-ordinating networked individuals and their data; beta-release, offering ‘beta’ artifacts as knowledge trades; beta-testing, trialing and modifying other peoples ‘beta’ ideas; adapting, responding to technological disruption; and, reconfiguring, embracing opportunities offered by technological disruption. These approaches position knowledge co-creation as another capability of the community artist, along with co-creating art and media.
Resumo:
Gene therapy has the potential to provide safe and targeted therapies for a variety of diseases. A range of intracellular gene delivery vehicles have been proposed for this purpose. Non-viral vectors are a particularly attractive option and among them cationic peptides have emerged as promising candidates. For the pharmaceutical formulation and application to clinical studies it is necessary to quantify the amount of pDNA condensed with the delivery system. There is a severe deficiency in this area, thus far no methods have been reported specifically for pDNA condensed with cationic peptide to form nanoparticles. The current study seeks to address this and describes the evaluation of a range of disruption agents to extract DNA from nanoparticles formed by condensation with cationic fusogenic peptides RALA and KALA. Only proteinase K exhibited efficient and reproducible results and compatibility with the PicoGreen reagent based quantification assay. Thus we report for the first time a simple and reliable method that can quantify the pDNA content in pDNA cationic peptide nanoparticles.
Resumo:
Signalling lymphocyte activation molecule (SLAM) has been identified as an immune cell receptor for the morbilliviruses, measles (MV), canine distemper (CDV), rinderpest and peste des petits ruminants (PPRV) viruses, while CD46 is a receptor for vaccine strains of MV. More recently poliovirus like receptor 4 (PVRL4), also known as nectin 4, has been identified as a receptor for MV, CDV and PPRV on the basolateral surface of polarised epithelial cells. PVRL4 is also up-regulated by MV in human brain endothelial cells. Utilisation of PVRL4 as a receptor by phocine distemper virus (PDV) remains to be demonstrated as well as confirmation of use of SLAM. We have observed that unlike wild type (wt) MV or wtCDV, wtPDV strains replicate in African green monkey kidney Vero cells without prior adaptation, suggesting the use of a further receptor. We therefore examined candidate molecules, glycosaminoglycans (GAG) and the tetraspan proteins, integrin β and the membrane bound form of heparin binding epithelial growth factor (proHB-EGF),for receptor usage by wtPDV in Vero cells. We show that wtPDV replicates in Chinese hamster ovary (CHO) cells expressing SLAM and PVRL4. Similar wtPDV titres are produced in Vero and VeroSLAM cells but more limited fusion occurs in the latter. Infection of Vero cells was not inhibited by anti-CD46 antibody. Removal/disruption of GAG decreased fusion but not the titre of virus. Treatment with anti-integrin β antibody increased rather than decreased infection of Vero cells by wtPDV. However, infection was inhibited by antibody to HB-EGF and the virus replicated in CHO-proHB-EGF cells, indicating use of this molecule as a receptor. Common use of SLAM and PVRL4 by morbilliviruses increases the possibility of cross-species infection. Lack of a requirement for wtPDV adaptation to Vero cells raises the possibility of usage of proHB-EGF as a receptor in vivo but requires further investigation.
Resumo:
Background Metronidazole is the most commonly used antimicrobial for Bacteroides fragilis infections and is recommended for prophylaxis of colorectal surgery. Metronidazole resistance is increasing and the mechanisms of resistance are not clear.
Methods A transposon mutant library was generated in B. fragilis 638R (BF638R) to identify the genetic loci associated with resistance to metronidazole.
Results Thirty-two independently isolated metronidazole-resistant mutants had a transposon insertion in BF638R_1421 that encodes the ferrous transport fusion protein (feoAB). Deletion of feoAB resulted in a 10-fold increased MIC of metronidazole for the strain. The metronidazole MIC for the feoAB mutant was similar to that for the parent strain when grown on media supplemented with excess iron, suggesting that the increase seen in the MIC of metronidazole was due to reduced cellular iron transport in the feoAB mutant. The furA gene repressed feoAB transcription in an iron-dependent manner and disruption of furA resulted in constitutive transcription of feoAB, regardless of whether or not iron was present. However, disruption of feoAB also diminished the capacity of BF638R to grow in a mouse intraperitoneal abscess model, suggesting that inorganic ferrous iron assimilation is essential for B. fragilis survival in vivo.
Conclusions Selection for feoAB mutations as a result of metronidazole treatment will disable the pathogenic potential of B. fragilis and could contribute to the clinical efficacy of metronidazole. While mutations in feoAB are probably not a direct cause of clinical resistance, this study provides a key insight into intracellular metronidazole activity and the link with intracellular iron homeostasis.
Resumo:
Near-Earth asteroid (25143) Itokawa was visited by the Hayabusa spacecraft in 2005, resulting in a highly detailed surface shape and topography model. This model has led to several predictions for the expected radiative torques on this asteroid, suggesting that its spin rate should be decelerating. Through an observational survey spanning 2001 to 2013 we have successfully measured an acceleration in its spin rate of dω/dt = 3.54 (± 0.38) × 10^(-8) rad day^(-2), equivalent to a decrease of its rotation period of ~ 45 ms year^(-1). Using the shape model determined from the Hayabusa spacecraft, we applied a detailed thermophysical analysis, to reconcile the predicted YORP strength with that observed. We find that the center-of-mass for Itokawa must be shifted by ~20 m along the long-axis of the asteroid to reconcile observations with theory. This can be explained if Itokawa is composed of two separate bodies with very different bulk densities of 1740 ± 110 kg m^(-3) and 2730 ± 440 kg m^(-3), and was formed from the merger of two separate bodies, consistent with the collapse of a binary system or the re-accumulation of material from a catastrophic collisional disruption. We demonstrate that an observational measurement of radiative torques, when combined with a detailed shape model, can provide insight into the interior structure of an asteroid.
Resumo:
Far-travelled volcanic ashes (tephras) from Holocene eruptions in Alaska and the Pacific northwest have been traced to the easternmost extent of North America, providing the basis for a new high-precision geochronological framework throughout the continent through tephrochronology (the dating and correlation of tephra isochrons in sedimentary records). The reported isochrons are geochemically distinct, with seven correlated to documented sources in Alaska and the Cascades, including the Mazama ash from Oregon (w7600 years old) and the eastern lobe of the White River Ash from Alaska (~1150 years old). These findings mark the beginning of a tephrochronological framework of enhanced precision across North America, with applications in palaeoclimate, surface process and archaeological studies. The particle travel distances involved (up tow7000 km) also demonstrate the potential for continent-wide or trans-Atlantic socio-economic disruption from similar future eruptions.
Resumo:
The water activity (a(w)) of microbial substrates, biological samples, and foods and drinks is usually determined by direct measurement of the equilibrium relative humidity above a sample. However, these materials can contain ethanol, which disrupts the operation of humidity sensors. Previously, an indirect and problematic technique based on freezing-point depression measurements was needed to calculate the a(w) when ethanol was present. We now describe a rapid and accurate method to determine the a(w) of ethanol-containing samples at ambient temperatures. Disruption of sensor measurements was minimized by using a newly developed, alcohol-resistant humidity sensor fitted with an alcohol filter. Linear equations were derived from a(w) measurements of standard ethanol-water mixtures, and from Norrish's equation, to correct sensor measurements. To our knowledge, this is the first time that electronic sensors have been used to determine the a(w) of ethanol- containing samples.
Resumo:
This review considers the effect of ethanol-induced water stress on yeast metabolism and integrity. Ethanol causes water stress by lowering water activity (a(w)) and thereby interferes with hydrogen bonding within and between hydrated cell components, ultimately disrupting enzyme and membrane strut and function. The impact of ethanol on the energetic status of water is considered in relation to cell metabolism. Even moderate ethanol concentrations (5 to 10%, w/v) cause a sufficient reduction of a(w) to have metabolic consequences. When exposed to ethanol, cells synthesize compatible solutes such as glycerol and trehalose that protect against water stress and hydrogen-bond disruption. Ethanol affects the control of gene expression by the mechanism that is normally associated with (so-called) osmotic control. Furthermore, ethanol-induced water stress has ecological implications.
Resumo:
The deletion of the gene encoding the glycerol facilitator Fps1p was associated with an altered plasma membrane lipid composition in Saccharomyces cerevisiae. The S. cerevisiae fps1delta strain respectively contained 18 and 26% less ergosterol than the wild-type strain, at the whole-cell level and at the plasma membrane level. Other mutants with deficiencies in glycerol metabolism were studied to investigate any possible link between membrane ergosterol content and intracellular glycerol accumulation. In these mutants a modification in intracellular glycerol concentration, or in intra- to extracellular glycerol ratio was accompanied by a reduction in plasma membrane ergosterol content. However, there was no direct correlation between ergosterol content and intracellular glycerol concentration. Lipid composition influences the membrane permeability for solutes during adaptation of yeast cells to osmotic stress. In this study, ergosterol supplementation was shown to partially suppress the hypo-osmotic sensitivity phenotype of the fps1delta strain, leading to more efficient glycerol efflux, and improved survival. The erg-1 disruption mutant, which is unable to synthesise ergosterol, survived and recovered from the hypo-osmotic shock more successfully when the concentration of exogenously supplied ergosterol was increased. The results obtained suggest that a higher ergosterol content facilitates the flux of glycerol across the plasma membrane of S. cerevisiae cells.