962 resultados para Magnetic field measurement
Resumo:
A total of 500.7 m of continuous, vertical, oceanic gabbroic section was recovered during Leg 118. The gabbros obtained exhibited various degrees of alteration and deformation, which gave us a good opportunity to study the magnetic properties of oceanic gabbros. Many of these gabbros, which are mainly Fe-Ti oxide gabbros, have strong and unstable secondary magnetic components that were acquired during drilling. Stable inclinations, which are probably in-situ magnetic directions, show a single polarity, with an average value of 66° (±5°), meaning that the studied 501-m oceanic gabbroic block may be a candidate for the source of the marine magnetic anomaly. This may also imply that the metamorphism of oceanic gabbros causing acquisition of magnetization probably occurred within one geomagnetic polarity chron (about 0.3 to 0.7 m.y.) after these gabbros formed at the ridge, leading us to conclude that oceanic gabbros record the so-called Vine-Matthews-Morley type of initial magnetization at the ridge. The average intensity value of stable magnetic components of individual samples, which may be a minimum estimate for remanent magnetizations, is 1.6 A/m. Assuming this magnetic intensity value and a uniform magnetization within an oceanic gabbroic layer having a thickness of 4.5 km (i.e., whole layer 3), it is possible to explain most of the marine magnetic anomaly. If magnetic properties of the samples obtained from Hole 735B are common to oceanic gabbros, layer 3 may contribute more significantly to seafloor spreading magnetic anomalies than previously thought.
Resumo:
A 160 m mostly turbiditic late Pleistocene sediment sequence (IODP Expedition 308, Hole U1319A) from the Brazos-Trinity intraslope basin system off Texas was investigated with paleo- and rock magnetic methods. Numerous layers depleted in iron oxides and enriched by the ferrimagnetic iron-sulfide mineral greigite (Fe3S4) were detected by diagnostic magnetic properties. From the distribution of these layers, their stratigraphic context and the present geochemical zonation, we develop two conceptual reaction models of greigite formation in non-steady depositional environments. The "sulfidization model" predicts single or twin greigite layers by incomplete transformation of iron monosulfides with polysulfides around the sulfate methane transition (SMT). The "oxidation model" explains greigite formation by partial oxidation of iron monosulfides near the iron redox boundary during periods of downward shifting oxidation fronts. The stratigraphic record provides evidence that both these greigite formation processes act here at typical depths of about 12-14 mbsf and 3-4 mbsf. Numerous "fossil" greigite layers most likely preserved by rapid upward shifts of the redox zonation denote past SMT and sea floor positions characterized by stagnant hemipelagic sedimentation conditions. Six diagenetic stages from a pristine magnetite-dominated to a fully greigite-dominated magnetic mineralogy were differentiated by combination of various hysteresis and remanence parameters.
Resumo:
During Ocean Drilling Program (ODP) Leg 178, eight holes were drilled at three sites (1095, 1096, and 1101) on the continental rise along the western Antarctic Peninsula. The rise sediments proved to be good paleomagnetic recorders and provided continuous magnetostratigraphic records at all three sites. Biosiliceous microfossils, particularly diatoms and radiolarians, were present in the upper Miocene through lower Pliocene sections. In the upper Pliocene to Pleistocene sections, biosiliceous microfossils were rare but calcareous nannofossils and foraminifers were present. This paper summarizes the biostratigraphy and magnetostratigraphy of Leg 178 continental rise sites and is the first attempt at direct calibration of Antarctic biostratigraphic events to the geomagnetic polarity timescale in the Pacific sector of the Southern Ocean.
Resumo:
In this study we present a late Miocene - early Pliocene record of sixty-four zones with prominent losses in the magnetic susceptibility signal, taken on a sediment drift (ODP Site 1095) on the Pacific continental rise of the West Antarctic Peninsula. The zones are comparable in shape and magnitude and occur commonly at glacial-to-interglacial transitions. High resolution records of organic matter, magnetic susceptibility and clay mineral composition from early Pliocene intervals demonstrate that neither dilution effects nor provenance changes of the sediments have caused the magnetic susceptibility losses. Instead, reductive dissolution of magnetite under suboxic conditions seems to be the most likely explanation. We propose that during the deglaciation exceptionally high organic fluxes in combination with weak bottom water currents and prominent sediment draping diatom ooze layers produced temporary suboxic conditions in the uppermost sediments. It is remarkable that synsedimentary suboxic conditions can be observed in one of the best ventilated open ocean regions of the World.
Resumo:
During the first section of the "Meteor" cruise No. 2 a profile was run from the Azores to the south across the flanks of the Mid-Atlantic Ridge with a chain of seamounts. The profile extended between the Cruiser (living) and the Hyeres seamounts, which, according to our soundings, form a connected massif, and across the centre of the Grosse Meteor Bank (30°N, 28.5 °W). These seamounts rise from a depth of more than 4000 m up till close to the surface of the sea forming there a large almost flat plateau. In the case of the Grosse Meteor Bank, this plateau has a N-S extension of approx. 30 nautical miles and an E-W extension of approx. 20 nautical miles and reaches a height of 275 m in water depth. The gravity measurements yielded a density of the topographic masses of 2.6 g/cm**3 for the Grosse Meteor Bank. Magnitude and shape of the measured free-air anomaly are very well shown in a model computation with this density. The theoretical gravity effects of the seismically detected swell of cristalline rock and of the Moho depression (mountain root) are not indicated by the observational data. It can, therefore, be assumed that the latter two neutralize each other. It seems, accordingly, that there is no local isostatic compensation of the topographic masses. Hence, the density of 2.6 g/cm**3 obtained would be about the true density of rock. In connection with the mean velocity of P waves (Aric et al., 1968) obtained by seismic refraction methods it must be concluded that the material of the 1200-4000 m thick surface layer of the Grosse Meteor Bank consists of consolidated sediments. This finding is supported by the total intensity of the Earth's magnetic field over the Grosse Meteor Bank. On the assumption of a homogeneous magnetization in the direction of the present Earth's field, the computed anomaly of the massif deviates considerably from the measured anomaly while the magnetic field of the seismically detected crystalline body is capable of interpreting the observed data. Deviating from the prevailing interpretation of the seamounts' plateau as a volcanic cone with submarine abrasion, the Grosse Meteor Bank and the seamounts in the vicinity are assumed to be of continental origin. The questions whether these seamounts submerged later on or whether the sealevel has risen subsequently are, therefore, largely nonexistent.
Resumo:
Low-temperature (LT) magnetic remanence and hysteresis measurements, in the range 300-5 K, were combined with energy dispersive spectroscopy (EDS) in order to characterize the magnetic inventory of strongly diagenetically altered sediments originating from the Niger deep-sea fan. We demonstrate the possibility of distinguishing between different compositions of members of the magnetite-ulvöspinel and ilmenite-hematite solid solution series on a set of five representative samples, two from the upper suboxic and three from the lower sulfidic anoxic zone of gravity core GeoB 4901. Highly sensitive LT magnetic measurements were performed on magnetic extracts resulting in large differences in the magnetic behavior between samples from the different layers. This emphasizes that both Fe-Ti oxide phases occur in different proportions in the two geochemical environments. Most prominent are variations in the coercivity sensitive parameter coercive field (BC). At room-temperature (RT) hysteresis loops for all extracts are narrow and yield low coercivities (6-13 mT). With decreasing temperature the loops become more pronounced and wider. At 5 K an approximately 5-fold increase in BC for the suboxic samples contrasts a 20-25-fold increase for the samples from the anoxic zone. We demonstrate that this distinct increase in BC at LT corresponds to the increasing proportion of the Ti-rich hemoilmenite phase, while Fe-rich (titano-)magnetite dominates the magnetic signal at RT. This trend is also seen in the room-temperature saturation isothermal remanent magnetization (RT-SIRM) cycles: suboxic samples show remanence curves dominated by Fe-rich mineral phases while anoxic samples display curves clearly dominated by Ti-rich particles. We show that the EDS intensity ratios of the characteristic Fe Kalpha and Ti Kalpha lines of the Fe-Ti oxides may be used to differentiate between members of the magnetite-ulvöspinel and ilmenite-hematite solid solution series. Furthermore it is possible to calculate an approximate composition for each grain if the intensity ratios of natural particles are linked to well-known standards. Thus, element spectra with high Fe/Ti intensity ratios were found to be rather typical of titanomagnetite while low Fe/Ti ratios are indicative of hemoilmenite. The EDS analyses confirm the LT magnetic results, Fe-rich magnetic phases dominate in the upper suboxic environment whereas Ti-rich magnetic phases comprise the majority of particles in the lower anoxic domain: The mineral assemblage of the upper suboxic environments is composed of magnetite (~19%), titanomagnetite (~62%), hemoilmenite (~17%) and ~2% other particles. In the lower anoxic sediments, reductive diagenetic alteration has resulted in more extensive depletion of the (titano-)magnetite phase, resulting in a relative enrichment of the hemoilmenite phase (~66%). In these strongly anoxic sediments stoichiometric magnetite is barely preserved and only ~5% titanomagnetite was detected. The remaining ~28% comprises Ti-rich particles such as pseudobrookite or rutile.
Resumo:
Results of detailed geomagnetic and geomorphological studies carried out by R/V Akvanavt together with data obtained by a side-scanning sonar and high-frequency profiles from a towed Zvuk-4 vehicle plus results of visual observations of deep-sea manned Pisces submersible have shown that the spreading axis is divided into segments, whose strike (330°) differs from the overall strike (310°) of the axial magnetic anomaly. In the study area segments are about 1 km long and transform displacements are 0.5 km. Calculations on a model have shown that spreading is asymmetric: during the Brunhes epoch accretion rate of the African Plate was 6 mm/yr and that of the Arabian Plate 7 mm/yr. Earlier it had been 9 and 11 mm/yr, respectively.