908 resultados para Machine Tools
Resumo:
Habitually, capuchin monkeys access encased hard foods by using their canines and premolars and/or by pounding the food on hard surfaces. Instead, the wild bearded capuchins (Cebus libidinosus) of Boa Vista (Brazil) routinely crack palm fruits with tools. We measured size, weight, structure, and peak-force-at-failure of the four palm fruit species most frequently processed with tools by wild capuchin monkeys living in Boa Vista. Moreover, for each nut species we identify whether peak-force-at-failure was consistently associated with greater weight/volume, endocarp, thickness, and structural complexity. The goals of this study were (a) to investigate whether these palm fruits are difficult, or impossible, to access other than with tools and (b) to collect data on the physical properties of palm fruits that are comparable to those available for the nuts cracked open with tools by wild chimpanzees. Results showed that the four nut species differ in terms of peak-force-at-failure and that peak-force-at-failure is positively associated with greater weight (and consequently volume) and apparently with structural complexity (i.e. more kernels and thus more partitions); finally for three out of four nut species shell thickness is also positively associated with greater volume. The finding that the nuts exploited by capuchins with tools have very high resistance values support the idea that tool use is indeed mandatory to crack them open. Finally, the peak-force-at-failure of the piassava nuts is similar to that reported for the very tough panda nuts cracked open by wild chimpanzees; this highlights the ecological importance of tool use for exploiting high resistance foods in this capuchin species.
Resumo:
We consider the issue of performing residual and local influence analyses in beta regression models with varying dispersion, which are useful for modelling random variables that assume values in the standard unit interval. In such models, both the mean and the dispersion depend upon independent variables. We derive the appropriate matrices for assessing local influence on the parameter estimates under different perturbation schemes. An application using real data is presented and discussed.
Resumo:
Coconut water is a natural isotonic, nutritive, and low-caloric drink. Preservation process is necessary to increase its shelf life outside the fruit and to improve commercialization. However, the influence of the conservation processes, antioxidant addition, maturation time, and soil where coconut is cultivated on the chemical composition of coconut water has had few arguments and studies. For these reasons, an evaluation of coconut waters (unprocessed and processed) was carried out using Ca, Cu, Fe, K, Mg, Mn, Na, Zn, chloride, sulfate, phosphate, malate, and ascorbate concentrations and chemometric tools. The quantitative determinations were performed by electrothermal atomic absorption spectrometry, inductively coupled plasma optical emission spectrometry, and capillary electrophoresis. The results showed that Ca, K, and Zn concentrations did not present significant alterations between the samples. The ranges of Cu, Fe, Mg, Mn, PO (4) (3-) , and SO (4) (2-) concentrations were as follows: Cu (3.1-120 A mu g L(-1)), Fe (60-330 A mu g L(-1)), Mg (48-123 mg L(-1)), Mn (0.4-4.0 mg L(-1)), PO (4) (3-) (55-212 mg L(-1)), and SO (4) (2-) (19-136 mg L(-1)). The principal component analysis (PCA) and hierarchical cluster analysis (HCA) were applied to differentiate unprocessed and processed samples. Multivariated analysis (PCA and HCA) were compared through one-way analysis of variance with Tukey-Kramer multiple comparisons test, and p values less than 0.05 were considered to be significant.
Resumo:
This project is based on Artificial Intelligence (A.I) and Digital Image processing (I.P) for automatic condition monitoring of sleepers in the railway track. Rail inspection is a very important task in railway maintenance for traffic safety issues and in preventing dangerous situations. Monitoring railway track infrastructure is an important aspect in which the periodical inspection of rail rolling plane is required.Up to the present days the inspection of the railroad is operated manually by trained personnel. A human operator walks along the railway track searching for sleeper anomalies. This monitoring way is not more acceptable for its slowness and subjectivity. Hence, it is desired to automate such intuitive human skills for the development of more robust and reliable testing methods. Images of wooden sleepers have been used as data for my project. The aim of this project is to present a vision based technique for inspecting railway sleepers (wooden planks under the railway track) by automatic interpretation of Non Destructive Test (NDT) data using A.I. techniques in determining the results of inspection.
Resumo:
Since last two decades researches have been working on developing systems that can assistsdrivers in the best way possible and make driving safe. Computer vision has played a crucialpart in design of these systems. With the introduction of vision techniques variousautonomous and robust real-time traffic automation systems have been designed such asTraffic monitoring, Traffic related parameter estimation and intelligent vehicles. Among theseautomatic detection and recognition of road signs has became an interesting research topic.The system can assist drivers about signs they don’t recognize before passing them.Aim of this research project is to present an Intelligent Road Sign Recognition System basedon state-of-the-art technique, the Support Vector Machine. The project is an extension to thework done at ITS research Platform at Dalarna University [25]. Focus of this research work ison the recognition of road signs under analysis. When classifying an image its location, sizeand orientation in the image plane are its irrelevant features and one way to get rid of thisambiguity is to extract those features which are invariant under the above mentionedtransformation. These invariant features are then used in Support Vector Machine forclassification. Support Vector Machine is a supervised learning machine that solves problemin higher dimension with the help of Kernel functions and is best know for classificationproblems.
Resumo:
Choosing a new plastic material for a container includes several different steps. In this case,the Finnish company Hackman needed a new type of packaging material for theircutlery- and kitchentool series »Hackman tools«. The project was carried out in cooperationwith the design agency Ytterborn & Fuentes, which has Hackman as a client.Several different demands were put on the material in order to fulfill as many of the clientswishes as possible. The most urgent problem with the existing container was the difficultysfor the customer to clearly see the contents in the container. Because of this problemthe customer tried to open the container in the shop. To avoid this from happening,Hackman wanted a more transparent plastic material that still fulfilled all other necessaryproperties such as strength, viscosity, printability, sealability and exhaustion strength.The final result and recommendation of a polypropylen-plastic (Evacast) was based ondetailed studies of packaging plastics and their properties as well as discussions with plasticconvertersand suppliers. The recommended plastic is avaliable in several different modelsthat fulfill all demands on material properties, environmental aspects, cost aspects and transparency.Apart from the material problem the project also included drafting some sketches and ideason new construction solutions for the container. The construction of the exsisting containerwas also a problem because of its complexity. As a result of the change of material it has beenpossible to simplify the construction.
Resumo:
The motivation for this thesis work is the need for improving reliability of equipment and quality of service to railway passengers as well as a requirement for cost-effective and efficient condition maintenance management for rail transportation. This thesis work develops a fusion of various machine vision analysis methods to achieve high performance in automation of wooden rail track inspection.The condition monitoring in rail transport is done manually by a human operator where people rely on inference systems and assumptions to develop conclusions. The use of conditional monitoring allows maintenance to be scheduled, or other actions to be taken to avoid the consequences of failure, before the failure occurs. Manual or automated condition monitoring of materials in fields of public transportation like railway, aerial navigation, traffic safety, etc, where safety is of prior importance needs non-destructive testing (NDT).In general, wooden railway sleeper inspection is done manually by a human operator, by moving along the rail sleeper and gathering information by visual and sound analysis for examining the presence of cracks. Human inspectors working on lines visually inspect wooden rails to judge the quality of rail sleeper. In this project work the machine vision system is developed based on the manual visual analysis system, which uses digital cameras and image processing software to perform similar manual inspections. As the manual inspection requires much effort and is expected to be error prone sometimes and also appears difficult to discriminate even for a human operator by the frequent changes in inspected material. The machine vision system developed classifies the condition of material by examining individual pixels of images, processing them and attempting to develop conclusions with the assistance of knowledge bases and features.A pattern recognition approach is developed based on the methodological knowledge from manual procedure. The pattern recognition approach for this thesis work was developed and achieved by a non destructive testing method to identify the flaws in manually done condition monitoring of sleepers.In this method, a test vehicle is designed to capture sleeper images similar to visual inspection by human operator and the raw data for pattern recognition approach is provided from the captured images of the wooden sleepers. The data from the NDT method were further processed and appropriate features were extracted.The collection of data by the NDT method is to achieve high accuracy in reliable classification results. A key idea is to use the non supervised classifier based on the features extracted from the method to discriminate the condition of wooden sleepers in to either good or bad. Self organising map is used as classifier for the wooden sleeper classification.In order to achieve greater integration, the data collected by the machine vision system was made to interface with one another by a strategy called fusion. Data fusion was looked in at two different levels namely sensor-level fusion, feature- level fusion. As the goal was to reduce the accuracy of the human error on the rail sleeper classification as good or bad the results obtained by the feature-level fusion compared to that of the results of actual classification were satisfactory.
Resumo:
The main purpose of this thesis project is to prediction of symptom severity and cause in data from test battery of the Parkinson’s disease patient, which is based on data mining. The collection of the data is from test battery on a hand in computer. We use the Chi-Square method and check which variables are important and which are not important. Then we apply different data mining techniques on our normalize data and check which technique or method gives good results.The implementation of this thesis is in WEKA. We normalize our data and then apply different methods on this data. The methods which we used are Naïve Bayes, CART and KNN. We draw the Bland Altman and Spearman’s Correlation for checking the final results and prediction of data. The Bland Altman tells how the percentage of our confident level in this data is correct and Spearman’s Correlation tells us our relationship is strong. On the basis of results and analysis we see all three methods give nearly same results. But if we see our CART (J48 Decision Tree) it gives good result of under predicted and over predicted values that’s lies between -2 to +2. The correlation between the Actual and Predicted values is 0,794in CART. Cause gives the better percentage classification result then disability because it can use two classes.
Resumo:
The objective with this study has been to build general models of the mechanics in tree felling with chain-saw and to compare felling torque for different tools. The theoretical models are completed and validated with a comparative study. The study includes a great number of felling tools of which some are used with different methods. Felling torque was measured using a naturally like measuring arrangement where a tree is cut at about 3.7 m height and then anchored with a dynamometer to a tree opposite to the felling direction. Notch and felling cut was made as ordinary with exception that the hinge was made extra thin to reduce bending resistance. The tree was consequently not felled during the trials and several combinations of felling tools and individuals could be used on the same tree.The results show big differences between tools, methods and persons. The differences were, however, not general, but could vary depending on conditions (first of all tree diameters). Tools and methods that push or pull on the stem are little affected by the size of the tree, while tools that press on the stump are very much dependent of a large stump-diameter. Hand force asserted on a simple pole is consequently a powerful tool on small trees. For trees of medium size there are several alternative methods with different sizes and brands of felling levers and wedges. Larger and more ungainly tools and methods like tree pusher, winch, etc. develop very high felling torque on all tree sizes. On large trees also the felling wedge and especially the use of several wedges together develop very high felling torque.