898 resultados para MISCIBLE BLENDS
Resumo:
A blend of polyethersulfone (PES) and polycarbonate (PC) with a ratio of 40/60 was studied by scanning electron microscopy (SEM), dynamic mechanical analysis, and transmission electron microscopy (TEM). It was found that the PES-PC blend is a partially miscible, two-phase system, and an interfacial layer exists between the phases of PES and PC. Specific interaction resulting from the n-complex between PES and PC provides the driving force for formation of the interfacial layer. In addition, phase inversion behavior was also observed for the 40/60 composition.
Resumo:
Copolymers containing alternating flexible aliphatic blocks and rigid poly(p-phenylenevinylene) (PPV) blocks were synthesized and characterized. It was found that the fluorescent intensity increases with increasing length of the flexible blocks. Bright blue-light emitting diodes were fabricated using PPV copolymers as electroluminescent layers. The devices show 190 cd/m(2) light-emitting brightness at 460 nm and 15 V rum-on voltage. The effects of oxadiazole derivative PBD and tris(8-hydroxyquinoline) aluminum Alq(3) electron-transporting layers on the luminance and stability of the devices are discussed.
Resumo:
Novel morphology of ring-banded spherulites in the surface of poly(epsilon-caprolactone)/poly(styrene-co-acrylonitrile) (PCL/SAN) blends was discovered and studied by SEM and TEM. The ring-banded spherulites separate into those exhibiting a very dark contrast, of relatively regular bundles of lamellae and others appearing with a much brighter intensity, of a coarse and irregular aggregates of lamellae. The origin of the novel morphology is not due to different crystalline structures as in the case of isotactic polypropylene because only one crystal structure exists in PCL/SAN blends. The formation may reflect whether spherulites in PCL/SAN blends are nucleated at the bottom surface or at the top (free) surface.
Resumo:
Blends of nylon-6 and epoxidised ethylene propylene diene (eEPDM) rubber were prepared through reactive mixing. It is found that the toughness of nylon-6 can be much improved by this method, and that the particle size of eEPDM is much smaller than that of unexpoxidised EPDM (uEPDM) rubber in a nylon-6 matrix. This indicates that the epoxy group in eEPDM could react with a nylon-6 end group to form a graft copolymer which could act as an interfacial compatibiliser between the nylon-6 and the eEPDM rubber dispersed phase. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
Hybrid materials incorporating poly(ethylene glycol) (PEG) with tetraethoxysilane (TEOS) via a sol-gel process were studied for a wide range of compositions of PEG by DSC and high resolution solid-state C-13- and Si-29-NMR spectroscopy. The results indicate that the microstructure of the hybrid materials and the crystallization behavior of PEG in hybrids strongly depend on the relative content of PEG. With an increasing content of PEG, the microstructure of hybrid materials changes a lot, from intimate mixing to macrophase separation. It is found that the glass transition temperatures (T-g) (around 373 K) of PEG homogeneously embedded in a silica network are much higher than that (about 223 K) of pure PEG and also much higher in melting temperatures T-m (around 323 K) than PEG crystallites in heterogeneous hybrids. Meanwhile, the lower the PEG content, the more perfect the silica network, and the higher the T-g of PEG embedded in hybrids. An extended-chain structure of PEG was supposed to be responsible for the unusually high T-g of PEG. Homogeneous PEG-TEOS hybrids on a molecular level can be obtained provided that the PEG. content in the hybrids is less than 30% by weight. (C) 1998 John Wiley & Sons, Inc.
Resumo:
A new blend of poly(2-hydroxyethyl methacrylate) (PHEMA) with poly (ethylene glycol) (PEG) was prepared. The results from solid-state NMR indicate that the PHEMA/PEG(88:12, w/w) blend is miscible on a molecular level.
Resumo:
A digital image analysis(DIA) technique can be applied directly to the image obtained by polarizing microscope. The time-resolved DIA apparatus including image collecting, showing and data analysis has been home-made. As an example, it has been used to study the banded spherulite in the blends of poly(epsilon-caprolactone) (PCL) and poly(styrene-ran-acrylonitrile) (SAN).
Resumo:
Isothermal melt and cold crystallization kinetics of PEEKK have been investigated by differential scanning calorimetry in two temperature regions. During the primary crystallization process, the relative crystallinity develops with a time dependence described by the Avrami equation, with exponent n = 2 for both melt and cold crystallization. The activation energies are -544.5 and 466.7 kJ/mol for crystallization from the melt and amorphous glassy state, respectively. The equilibrium melting point T-m(o) is estimated to be 371 degrees C by using the Hoffman-Weeks approach. The lateral and end surface free energies derived from the Lauritzen-Hoffman spherulitic growth rate equation are sigma=10 erg/cm(2) and sigma(e) = 60 erg/cm(2), respectively. The work of chain folding q is determined as 3.98 kcal/mol. These observed crystallization kinetic characteristics of PEEKK are compared with those of PEEK. (C) 1997 Elsevier Science Ltd.
Resumo:
The thermal properties of ethylene propylene copolymer-grafted-acrylic acid (EP-g-AA) were investigated by using differential scanning calorimetry (DSC). Compared with the ethylene propylene copolymer (EP), the peak values of the melting temperature (T-m) of the propylene sequences in the grafted EP changed a little, the crystallization temperature (T-c) increased about 8-12 degrees C, and the melting enthalpy (Delta H-m) increased about 4-6 J/g. The isothermal crystallization kinetics of grafted and ungrafted samples was carried out by DSC. Within the scope of the researched crystallization temperature, the Avrami exponent (n) of the ungrafted sample was 1.6-1.8, and that of grafted samples were all above 2, which indicated that the grafted monomer could become the crystal nuclei for the crystallization of propylene sequence. With increasing grafted monomer content, the crystallization rate of propylene sequence in grafted EP increased; it might be the result of rapid nucleation rate and crystal growth rate.
Resumo:
The crystallization behavior of high-density polyethylene (HDPE) on highly oriented isotactic polypropylene (iPP) at elevated temperatures (e.g., from 125 to 128 degrees C), was studied using transmission electron microscopy and electron diffraction. The results show that epitaxial crystallization of HDPE on the highly oriented iPP substrates occurs only in a thin layer which is in direct contact with the iPP substrate, when the HDPE is crystallized from the melt on the oriented iPP substrates at 125 degrees C. The critical layer thickness of the epitaxially crystallized HDPE is not more than 30 nm when the HDPE is isothermally crystallized on the oriented iPP substrates at 125 degrees C. When the crystallization temperature is above 125 degrees C, the HDPE crystallizes in the form of crystalline aggregates and a few individual crystalline lamellae. But both the crystalline aggregates and the individual crystalline lamellae have no epitaxial orientation relationship with the iPP substrate. This means that there exists a critical crystallization temperature for the occurrence of epitaxial crystallization of HDPE on the melt-drawn oriented iPP substrates (i.e., 125 degrees C). (C) 1997 John Wiley & Sons, Inc.
Resumo:
A super-tough polycarbonate (PC) blend was obtained by using epoxidized ethylene propylene diene (eEPDM) rubber as modifier. The notched Izod impact strength of PC/eEPDM (96/4) blend shows a great improvement, with a value about 25 times of that of pure PC. Finely and homogeneously dispersed rubber particles (0.2-0.8 mu m) in the PC matrix indicated good adhesion between the eEPDM rubber phase and the PC matrix. (C) 1997 Elsevier Science Ltd.
Application of the Sanchez-Lacombe lattice fluid theory to the system pvme/ps and model calculations
Resumo:
Cloud point curves reported in the literature for five representatives of the system poly(vinyl methyl ether)/polystyrene were evaluated theoretically by means of the Sanchez-Lacombe lattice fluid theory. The measured phase separation behavior can be described within experimental error using only one adjustable parameter (quantifying the interaction between the unlike mers). The Flory-Huggins interaction parameters calculated from this theoretical description depend in good approximation linearly on composition (volume fractions) and on the inverse temperature. An evaluation of these data yields a maximum heat effect which is almost one order of magnitude less (ca. -0.25 J/cm(3)) than obtained via Hess's cycle (dissolution of the components and of the blend) from calorimetric measurements. Model calculations on the basis of the present theory demonstrate that the critical points shift to a different extent upon a certain relative change in the molar mass of the blend components. The sensitivity of the calculated phase diagrams against changes in the scaling parameter decreases in the following order: interaction energies between unlike mers, differences in the scaling temperatures, pressures and densities.
Resumo:
The positive temperature coefficient (PTC) and negative temperature coefficient (NTC) effect of carbon black (CB) filled low density polyethylene (LDPE) composites was studied using electrical resistivity spectra, DSC, tensile mechanical analysis (TMA) and small-angle X-ray scattering (SAXS) techniques. The three LDPEs used have a similar crystallinity and different melting index (MI). The experimental results indicate that the CB has no significant effect on the crystallinity and the long spacing of crystalline domains of LDPE. Based upon the TMA and dynamic elastic modulus spectra, it can be concluded that the PTC effect is related to the thermal expansion of the polymer matrix, and the NTC effect is caused by a decrease of the elastic modulus of the polymer at high temperatures. The NTC effect can be reduced by enhancing either the elastic modulus or the interaction between carbon black and matrix. (C) 1997 Elsevier Science Ltd.