965 resultados para MASS SPECTROMETRY, GAS PHASE ACIDITY, GAS PHASE BASICITY
Resumo:
A constante preocupação com o aumento do uso de agrotóxicos nas lavouras e os riscos gerados pelos resíduos destes compostos fazem com que os órgãos responsáveis pela fiscalização de alimentos no Brasil controlem a presença dessas substâncias nos produtos que chegam à mesa do consumidor. Atualmente, um dos grandes problemas na produção de alimentos é a utilização de substâncias proibidas em lavouras, muitas das quais não possuem estudos nem limites máximos de resíduos (LMR) estabelecidos, assim como a utilização de substâncias já registradas, mas em quantidades ou métodos de manejo incorretos. Ambos os casos podem resultar em sérios problemas à saúde humana. O objetivo deste estudo foi a avaliação da determinação de morfolina em amostras de manga utilizando técnicas como a Extração em Fase Sólida e a Cromatografia Gasosa acoplada à Espectrometria de Massas (SPE-GC-MS), assim como a Microextração em Sorvente Empacotado e Cromatografia Gasosa acoplada à Espectrometria de Massas (MEPS-GC-MS). Um segundo objetivo deste estudo consistiu em desenvolver, validar e avaliar uma metodologia analítica capaz de identificar quantitativamente a morfolina em amostras de manga por Cromatografia Líquida de Ultra Eficiência acoplada a Espectrometria de Massas em tandem (UHPLC-MS/MS). Para análise por GC-MS fez-se necessária a etapa de derivatização do analito, de forma que o mesmo aumentasse sua volatilidade e diminuísse a polaridade. A comparação entre as técnicas SPE e MEPS não foi possível devido ao efeito de matriz causado pela contaminação do liner e da coluna cromatográfica. Já a metodologia validada por UHPLC-MS/MS seguiu os critérios exigidos pelo Manual de Garantia da Qualidade Analítica, do Ministério da Agricultura Pecuária e Abastecimento (MAPA). O método foi aplicado em mangas de diferentes variedades obtidas no comércio local. Não foram encontrados resíduos de morfolina em nenhuma das amostras investigadas, de acordo com a metodologia proposta. Os resultados apresentados neste trabalho estabelecem metodologias eficientes, rápidas e de baixo custo na determinação de morfolina em amostras de manga.
Resumo:
A grande prevalência do consumo de álcool por mulheres em idade reprodutiva aliada à gravidez não planejada expõe a gestante a um elevado risco de se alcoolizar em algum momento da gestação, principalmente no início do período gestacional em que a maioria delas ainda não tomou ciência do fato. Assim, torna-se extremamente relevante o desenvolvimento de métodos de detecção precoce de recém-nascidos em risco de desenvolvimento de problemas do espectro dos transtornos relacionados à exposição fetal ao álcool. O objetivo desse estudo foi desenvolver, validar e avaliar a eficácia de um método de quantificação de ésteres etílicos de ácidos graxos (FAEEs) no mecônio de recém-nascidos para avaliação da exposição fetal ao álcool. Os FAEEs avaliados foram: palmitato de etila, estearato de etila, oleato de etila e linoleato de etila.O método consistiu no preparo das amostras pela extração líquido-líquido utilizando água, acetona e hexano, seguida de extração em fase sólida empregando cartuchos de aminopropilsilica. A separação e quantificação dos analitos foi realizada por cromatografia em fase gasosa acoplada à espectrometria de massas. Os limites de quantificação (LQ) variaram entre 50-100ng/g. A curva de calibração foi linear de LQ até 2000ng/g para todos os analitos. A recuperação variou de 69,79% a 106,57%. Os analitos demonstraram estabilidade no ensaio de pós-processamento e em solução. O método foi aplicado em amostras de mecônio de 160 recém-nascidos recrutados em uma maternidade pública de Ribeirão Preto-SP. O consumo de álcool materno foi reportado utilizando questionários de rastreamento validados T-ACE e AUDIT e relatos retrospectivos da quantidade e frequência de álcool consumida ao longo da gestação. A eficácia do método analítico em identificar os casos positivos foi determinada pela curva Receiver Operating Characteristic (ROC). O consumo alcoólico de risco foi identificado pelo T-ACE em 31,3% das participantes e 50% reportaram o uso de álcool durante a gestação. 51,3% dos recém-nascidos apresentaram FAEEs em seu mecônio, sendo que 33,1% apresentaram altas concentrações para a somatória dos FAEEs (maior que 500ng/g), compatível com um consumo abusivo de álcool. O oleato de etila foi o biomarcador mais prevalente e o linoleato de etila foi o biomarcador que apresentou as maiores concentrações. Houve uma variabilidade no perfil de distribuição dos FAEEs entre os indivíduos, e discordâncias entre a presença de FAEEs e o consumo reportado pela mãe. A concentração total dos FAEEs nos mecônio mostrou-se como melhor indicador da exposição fetal ao álcool quando comparado com o uso de um único biomarcador. O ponto de corte para esta população foi de aproximadamente 600ng/g para uso tipo binge (três ou mais doses por ocasião) com sensibilidade de 71,43% e especificidade de 84,37%. Este estudo reforça a importância da utilização de métodos laboratoriais na identificação da exposição fetal ao álcool.
Resumo:
An exhaustive characterization of the biogas from some waste disposal facilities has been carried out. The analysis includes the main components (methane, carbon dioxide, nitrogen and oxygen) as well as trace components such as hydrogen sulphide, ammonia and VOCs (volatile organic compounds) including siloxanes and halogenated compounds. VOCs were measured by GC/MS (Gas Chromatography/Mass Spectrometry) using two different procedures: thermal desorption of the Tenax TA and Carbotrap 349 tubes and SPME (Solid Phase Micro-Extraction). A method has been established to measure the total halogen content of the biogas with the AOX (adsorbable organically bound halogens) technique. The equipment used to analyze the samples was a Total Organic Halogen Analyzer (TOX-100). Similar results were obtained when comparing the TOX (Total Organic Halogen) values with those obtained by GC/MS. The halogen content in all the samples was under 22 mg Cl/Nm3 which is below the limit of 150 mg/Nm3 proposed in the Spanish Regulations for any use of the biogas. The low chlorine content in the biogas studied, as well as the low content of other trace compounds, makes it suitable for use as a fuel for electricity generating engines.
Resumo:
This study centers on the question: How sensitive are 231Pa/230Th and 10Be/230Th to sediment composition and redistribution? The natural radionuclides 231Pa, 230Th and 10Be recorded in deep sea sediments are tracers for water mass advection and particle fluxes. We investigate the influence of oceanic particle composition on the element adsorption in order to improve our understanding of sedimentary isotope records. We present new data on particle size specific 231Pa and 10Be concentrations. An additional separation step, based on settling velocities, led to the isolation of a very opal-rich phase. We find that opal-rich particles contain the highest 231Pa and 10Be concentrations, and higher 231Pa/230Th and 10Be/230Th isotope ratios than opal-poor particles. The fractionation relative to 230Th induced by the adsorption to opal-rich particles is more pronounced for 231Pa than for 10Be. We conclude that bulk 231Pa/230Th in Southern Ocean sediments is most suitable as a proxy for past opal fluxes. The comparison between two neighboring cores with rapid and slow accumulation rates reveals that these isotope ratios are not influenced significantly by the intensity of sediment focusing at these two study sites. However, a simulation shows that particle sorting by selective removal of sediment (winnowing) could change the isotope ratios. Consequently, 231Pa/230Th should not be used as paleocirculation proxy in cases where a strong loss of opal-rich material due to bottom currents occurred.
Resumo:
In a deep-sea sediment core recovered from a site lying well above the local lysocline, several organic geochemical proxies, and two different calcite dissolution indicators, are compared in order to evaluate the relationship between calcite dissolution and paleoproductivity over the past three glacial-interglacial cycles. The degree of foraminiferal break-up, and the CaCO3 particle size distribution, both point to significant periods of dissolution every 22 kyr during glacial stages and substages. These dissolution events are concomitant with periods of enhanced primary productivity, as indicated by the abundance of several biomarkers (alkenones, cholesterol, brassicasterol, keto-ol), used here to indicate changes in paleoproductivity. Dissolution fluctuations are highly coherent and in phase with the estimated paleoproductivity variations providing strong evidence that the observed dissolution is due to organic matter remineralization within the sediments rather, than to changes in CO32? concentration in the overlying water column.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
sThe structure of a two-chain peptide formed by the treatment of the potent antimicrobial peptide microcin J25 (MccJ25) with thermolysin has been characterized by NMR spectroscopy and mass spectrometry. The native peptide is 21 amino acids in size and has the remarkable structural feature of a ring formed by linkage of the side chain of Glu8 to the N-terminus that is threaded by the C-terminal tail of the peptide. Thermolysin cleaves the peptide at the Phe10-Val11 amide bond, but the threading of the C-terminus through the N-terminal ring is so tight that the resultant two chains remain associated both in the solution and in the gas phases. The three-dimensional structure of the thermolysin-cleaved peptide derived using NMR spectroscopy and simulated annealing calculations has a well-defined core that comprises the N-terminal ring and the threading C-terminal tail. In contrast to the well-defined core, the newly formed termini at residues Phe10 and Val11 are disordered in solution. The C-terminal tail is associated to the ring both by hydrogen bonds stabilizing a short beta-sheet and by hydrophobic interactions. Moreover, unthreading of the tail through the ring is prevented by the bulky side chains of Phe19 and Tyr20, which flank the octapeptide ring. This noncovalent two-peptide complex that has a remarkable stability in solution and in highly denaturing conditions and that survives in the gas phase is the first example of such a two-chain peptide lacking disulfide or interchain covalent bonds.
Resumo:
In this study, we investigate the fabrication of 3D porous poly(lactic-co-glycolic acid) (PLGA) scaffolds using the thermally-induced phase separation technique. The current study focuses on the selection of alternative solvents for this process using a number of criteria, including predicted solubility. toxicity, removability and processability. Solvents were removed via either vacuum freeze-drying or leaching, depending on their physical properties. The residual solvent was tested using gas chromatography-mass spectrometry. A large range of porous, highly interconnected scaffold architectures with tunable pore size and alignment was obtained, including combined macro- and microporous structures and an entirely novel 'porous-fibre' structure. The morphological features of the most promising poly(lactic-co-glycolic acid) scaffolds were analysed via scanning electron microscopy and X-ray micro-computed tomography in both two and three dimensions. The Young's moduli of the scaffolds under conditions of temperature, pH and ionic strength similar to those found in the body were tested and were found to be highly dependent on the architectures.
Resumo:
The catalytic destruction of 1,1,1-trichloroethane (TCA) over model sulfated Pt(111) surfaces has been investigated by fast X-ray photoelectron spectroscopy and mass spectrometry. TCA adsorbs molecularly over SO4 precovered Pt(111) at 100 K, with a saturation coverage of 0.4 monolayer (ML) comparable to that on the bare surface. Surface crowding perturbs both TCA and SO4 species within the mixed adlayer, evidenced by strong, coverage-dependent C 1s and Cl and S 2p core-level shifts. TCA undergoes complete dechlorination above 170 K, accompanied by C−C bond cleavage to form surface CH3, CO, and Cl moieties. These in turn react between 170 and 350 K to evolve gaseous CO2, C2H6, and H2O. Subsequent CH3 dehydrogenation and combustion occurs between 350 and 450 K, again liberating CO2 and water. Combustion is accompanied by SO4 reduction, with the coincident evolution of gas phase SO2 and CO2 suggesting the formation of a CO−SOx surface complex. Reactively formed HCl desorbs in a single state at 400 K. Only trace (<0.06 ML) residual atomic carbon and chlorine remain on the surface by 500 K.
Resumo:
The stability of the oil phase obtained from intermediate pyrolysis process was used for this investigation. The analysis was based on standard methods of determining kinematic viscosity, gas - chromatography / mass - spectrometry for compositional changes, FT-IR for functional group, Karl Fischer titration for water content and bomb calorimeter for higher heaating values. The methods were used to determine changes that occurred during ageing. The temperatures used for thermal testing were 60 °C and 80 °C for the periods of 72 and 168 h. Methanol and biodiesel were used as solvents for the analysis. The bio-oil samples contained 10 % methanol, 10 % Biodiesel, 20 % Biodiesel and unstabilised pyrolysis oil. The tests carried out at 80 °C showed drastic changes compared to those at 60 °C. The bio-oil samples containing 20 % biodiesel proved to be more stable than those with 10 % methanol. The unstabilised pyrolysis oil showed the greatest changes in viscosity, composition change and highest increase in water content. The measurement of kinematic viscosity and gas chromatograph mass spectrometry were found to be more reliable for predicting the ageing process.
Resumo:
The use of canines as a method of detection of explosives is well established worldwide and those applying this technology range from police forces and law enforcement to humanitarian agencies in the developing world. Despite the recent surge in publication of novel instrumental sensors for explosives detection, canines are still regarded by many to be the most effective real-time field method of explosives detection. However, unlike instrumental methods, currently it is difficult to determine detection levels, perform calibration of the canines' ability or produce scientifically valid quality control checks. Accordingly, amongst increasingly strict requirements regarding forensic evidence admission such as Frye and Daubert, there is a need for better scientific understanding of the process of canine detection. ^ When translated to the field of canine detection, just like any instrumental technique, peer reviewed publication of the reliability, success and error rates, is required for admissibility. Commonly training is focussed towards high explosives such as TNT and Composition 4, and the low explosives such as Black and Smokeless Powders are added often only for completeness. ^ Headspace analyses of explosive samples, performed by Solid Phase Microextraction (SPME) paired with Gas Chromatography - Mass Spectrometry (GC-MS), and Gas Chromatography - Electron Capture Detection (GC-ECD) was conducted, highlighting common odour chemicals. The odour chemicals detected were then presented to previously trained and certified explosives detection canines, and the activity/inactivity of the odour determined through field trials and experiments. ^ It was demonstrated that TNT and cast explosives share a common odour signature, and the same may be said for plasticized explosives such as Composition C-4 and Deta Sheet. Conversely, smokeless powders were demonstrated not to share common odours. An evaluation of the effectiveness of commercially available pseudo aids reported limited success. The implications of the explosive odour studies upon canine training then led to the development of novel inert training aids based upon the active odours determined. ^
Resumo:
In certain European countries and the United States of America, canines have been successfully used in human scent identification. There is however, limited scientific knowledge on the composition of human scent and the detection mechanism that produces an alert from canines. This lack of information has resulted in successful legal challenges to human scent evidence in the courts of law. ^ The main objective of this research was to utilize science to validate the current practices of using human scent evidence in criminal cases. The goals of this study were to utilize Headspace Solid Phase Micro Extraction Gas Chromatography Mass Spectrometry (HS-SPME-GC/MS) to determine the optimum collection and storage conditions for human scent samples, to investigate whether the amount of DNA deposited upon contact with an object affects the alerts produced by human scent identification canines, and to create a prototype pseudo human scent which could be used for training purposes. ^ Hand odor samples which were collected on different sorbent materials and exposed to various environmental conditions showed that human scent samples should be stored without prolonged exposure to UVA/UVB light to allow minimal changes to the overall scent profile. Various methods of collecting human scent from objects were also investigated and it was determined that passive collection methods yields ten times more VOCs by mass than active collection methods. ^ Through the use of polymerase chain reaction (PCR) no correlation was found between the amount of DNA that was deposited upon contact with an object and the alerts that were produced by human scent identification canines. Preliminary studies conducted to create a prototype pseudo human scent showed that it is possible to produce fractions of a human scent sample which can be presented to the canines to determine whether specific fractions or the entire sample is needed to produce alerts by the human scent identification canines. ^
Resumo:
Current commercially available mimics contain varying amounts of either the actual explosive/drug or the chemical compound of suspected interest by biological detectors. As a result, there is significant interest in determining the dominant chemical odor signatures of the mimics, often referred to as pseudos, particularly when compared to the genuine contraband material. This dissertation discusses results obtained from the analysis of drug and explosive headspace related to the odor profiles as recognized by trained detection canines. Analysis was performed through the use of headspace solid phase microextraction in conjunction with gas chromatography mass spectrometry (HS-SPME-GC-MS). Upon determination of specific odors, field trials were held using a combination of the target odors with COMPS. Piperonal was shown to be a dominant odor compound in the headspace of some ecstasy samples and a recognizable odor mimic by trained detection canines. It was also shown that detection canines could be imprinted on piperonal COMPS and correctly identify ecstasy samples at a threshold level of approximately 100ng/s. Isosafrole and/or MDP-2-POH show potential as training aid mimics for non-piperonal based MDMA. Acetic acid was shown to be dominant in the headspace of heroin samples and verified as a dominant odor in commercial vinegar samples; however, no common, secondary compound was detected in the headspace of either. Because of the similarities detected within respective explosive classes, several compounds were chosen for explosive mimics. A single based smokeless powder with a detectable level of 2,4-dinitrotoluene, a double based smokeless powder with a detectable level of nitroglycerine, 2-ethyl-1-hexanol, DMNB, ethyl centralite and diphenylamine were shown to be accurate mimics for TNT-based explosives, NG-based explosives, plastic explosives, tagged explosives, and smokeless powders, respectively. The combination of these six odors represents a comprehensive explosive odor kit with positive results for imprint on detection canines. As a proof of concept, the chemical compound PFTBA showed promise as a possible universal, non-target odor compound for comparison and calibration of detection canines and instrumentation. In a comparison study of shape versus vibration odor theory, the detection of d-methyl benzoate and methyl benzoate was explored using canine detectors. While results did not overwhelmingly substantiate either theory, shape odor theory provides a better explanation of the canine and human subject responses.