985 resultados para MAPPING CONCENTRATION PROFILES
Resumo:
RESUME : La douleur neuropathique est le résultat d'une lésion ou d'un dysfonctionnement du système nerveux. Les symptômes qui suivent la douleur neuropathique sont sévères et leur traitement inefficace. Une meilleure approche thérapeutique peut être proposée en se basant sur les mécanismes pathologiques de la douleur neuropathique. Lors d'une lésion périphérique une douleur neuropathique peut se développer et affecter le territoire des nerfs lésés mais aussi les territoires adjacents des nerfs non-lésés. Une hyperexcitabilité des neurones apparaît au niveau des ganglions spinaux (DRG) et de la corne dorsale (DH) de la moelle épinière. Le but de ce travail consiste à mettre en évidence les modifications moléculaires associées aux nocicepteurs lésés et non-lésés au niveau des DRG et des laminae I et II de la corne dorsale, là où l'information nociceptive est intégrée. Pour étudier les changements moléculaires liés à la douleur neuropathique nous utilisons le modèle animal d'épargne du nerf sural (spared nerve injury model, SNI) une semaine après la lésion. Pour la sélection du tissu d'intérêt nous avons employé la technique de la microdissection au laser, afin de sélectionner une sous-population spécifique de cellules (notamment les nocicepteurs lésés ou non-lésés) mais également de prélever le tissu correspondant dans les laminae superficielles. Ce travail est couplé à l'analyse à large spectre du transcriptome par puce ADN (microarray). Par ailleurs, nous avons étudié les courants électriques et les propriétés biophysiques des canaux sodiques (Na,,ls) dans les neurones lésés et non-lésés des DRG. Aussi bien dans le système nerveux périphérique, entre les neurones lésés et non-lésés, qu'au niveau central avec les aires recevant les projections des nocicepteurs lésés ou non-lésés, l'analyse du transcriptome montre des différences de profil d'expression. En effet, nous avons constaté des changements transcriptionnels importants dans les nocicepteurs lésés (1561 gènes, > 1.5x et pairwise comparaison > 77%) ainsi que dans les laminae correspondantes (618 gènes), alors que ces modifications transcriptionelles sont mineures au niveau des nocicepteurs non-lésés (60 gènes), mais important dans leurs laminae de projection (459 gènes). Au niveau des nocicepteurs, en utilisant la classification par groupes fonctionnels (Gene Ontology), nous avons observé que plusieurs processus biologiques sont modifiés. Ainsi des fonctions telles que la traduction des signaux cellulaires, l'organisation du cytosquelette ainsi que les mécanismes de réponse au stress sont affectés. Par contre dans les neurones non-lésés seuls les processus biologiques liés au métabolisme et au développement sont modifiés. Au niveau de la corne dorsale de la moelle, nous avons observé des modifications importantes des processus immuno-inflammatoires dans l'aire affectée par les nerfs lésés et des changements associés à l'organisation et la transmission synaptique au niveau de l'aire des nerfs non-lésés. L'analyse approfondie des canaux sodiques a démontré plusieurs changements d'expression, principalement dans les neurones lésés. Les analyses fonctionnelles n'indiquent aucune différence entre les densités de courant tétrodotoxine-sensible (TTX-S) dans les neurones lésés et non-lésés même si les niveaux d'expression des ARNm des sous-unités TTX-S sont modifiés dans les neurones lésés. L'inactivation basale dépendante du voltage des canaux tétrodotoxine-insensible (TTX-R) est déplacée vers des potentiels positifs dans les cellules lésées et non-lésées. En revanche la vitesse de récupération des courants TTX-S et TTX-R après inactivation est accélérée dans les neurones lésés. Ces changements pourraient être à l'origine de l'altération de l'activité électrique des neurones sensoriels dans le contexte des douleurs neuropathiques. En résumé, ces résultats suggèrent l'existence de mécanismes différenciés affectant les neurones lésés et les neurones adjacents non-lésés lors de la mise en place la douleur neuropathique. De plus, les changements centraux au niveau de la moelle épinière qui surviennent après lésion sont probablement intégrés différemment selon la perception de signaux des neurones périphériques lésés ou non-lésés. En conclusion, ces modulations complexes et distinctes sont probablement des acteurs essentiels impliqués dans la genèse et la persistance des douleurs neuropathiques. ABSTRACT : Neuropathic pain (NP) results from damage or dysfunction of the peripheral or central nervous system. Symptoms associated with NP are severe and difficult to treat. Targeting NP mechanisms and their translation into symptoms may offer a better therapeutic approach.Hyperexcitability of the peripheral and central nervous system occurs in the dorsal root ganglia (DRG) and the dorsal horn (DH) of the spinal cord. We aimed to identify transcriptional variations in injured and in adjacent non-injured nociceptors as well as in corresponding laminae I and II of DH receiving their inputs.We investigated changes one week after the injury induced by the spared nerve injury model of NP. We employed the laser capture microdissection (LCM) for the procurement of specific cell-types (enrichment in nociceptors of injured/non-injured neurons) and laminae in combination with transcriptional analysis by microarray. In addition, we studied functionál properties and currents of sodium channels (Nav1s) in injured and neighboring non-injured DRG neurons.Microarray analysis at the periphery between injured and non-injured DRG neurons and centrally between the area of central projections from injured and non-injured neurons show significant and differential expression patterns. We reported changes in injured nociceptors (1561 genes, > 1.5 fold, >77% pairwise comparison) and in corresponding DH laminae (618 genes), while less modifications occurred in non-injured nociceptors (60 genes) and in corresponding DH laminae (459 genes). At the periphery, we observed by Gene Ontology the involvement of multiple biological processes in injured neurons such as signal transduction, cytoskeleton organization or stress responses. On contrast, functional overrepresentations in non-injured neurons were noted only in metabolic or developmentally related mechanisms. At the level of superficial laminae of the dorsal horn, we reported changes of immune and inflammatory processes in injured-related DH and changes associated with synaptic organization and transmission in DH corresponding to non-injured neurons. Further transcriptional analysis of Nav1s indicated several changes in injured neurons. Functional analyses of Nav1s have established no difference in tetrodotoxin-sensitive (TTX-S) current densities in both injured and non-injured neurons, despite changes in TTX-S Nav1s subunit mRNA levels. The tetrodotoxin-resistant (TTX-R) voltage dependence of steady state inactivation was shifted to more positive potentials in both injured and non-injured neurons, and the rate of recovery from inactivation of TTX-S and TTX-R currents was accelerated in injured neurons. These changes may lead to alterations in neuronal electrogenesis. Taken together, these findings suggest different mechanisms occurring in the injured neurons and the adjacent non-injured ones. Moreover, central changes after injury are probably driven in a different manner if they receive inputs from injured or non-injured neurons. Together, these distinct and complex modulations may contribute to NP.
Resumo:
The Community Profiles Tool can be used to develop local health and wellbeing profiles from over 200 health-related indicators compiled from a range of data sources. Users can create tables, maps and charts of health-related indicators, and integrate this with key public health documents from the Health Well website such as relevant interventions, policies, and evidence related to each indicator.
Resumo:
Zeta plus filter membranes (ZP60S) have been shown to be efficient for rotavirus concentration from wastewater and for the reduction of cytotoxicity for cell cultures. Recently a variability in both properties was observed. In view of the low costs and the high virus recovery rates obtained in the past, we re-evaluated the application of ZP60S filter membranes for virus concentration from environmental samples. Some factors that could interfere with the concentration strategy using ZP60S were also considered and assessed including the type of water to be filtered and the possible release of toxic substances from the membrane matrix during filtration.
Resumo:
A factor limiting preliminary rockfall hazard mapping at regional scale is often the lack of knowledge of potential source areas. Nowadays, high resolution topographic data (LiDAR) can account for realistic landscape details even at large scale. With such fine-scale morphological variability, quantitative geomorphometric analyses become a relevant approach for delineating potential rockfall instabilities. Using digital elevation model (DEM)-based ?slope families? concept over areas of similar lithology and cliffs and screes zones available from the 1:25,000 topographic map, a susceptibility rockfall hazard map was drawn up in the canton of Vaud, Switzerland, in order to provide a relevant hazard overview. Slope surfaces over morphometrically-defined thresholds angles were considered as rockfall source zones. 3D modelling (CONEFALL) was then applied on each of the estimated source zones in order to assess the maximum runout length. Comparison with known events and other rockfall hazard assessments are in good agreement, showing that it is possible to assess rockfall activities over large areas from DEM-based parameters and topographical elements.
Resumo:
The alpha chain of the interleukin-2 receptor (IL-2R alpha) is a key regulator of lymphocyte proliferation. To analyze the mechanisms controlling its expression in normal cells, we used the 5'-flanking region (base pairs -2539/+93) of the mouse gene to drive chloramphenicol acetyltransferase expression in four transgenic mouse lines. Constitutive transgene activity was restricted to lymphoid organs. In mature T lymphocytes, transgene and endogenous IL-2R alpha gene expression was stimulated by concanavalin A and up-regulated by IL-2 with very similar kinetics. In thymic T cell precursors, IL-1 and IL-2 cooperatively induced transgene and IL-2R alpha gene expression. These results show that regulation of the endogenous IL-2R alpha gene occurs mainly at the transcriptional level. They demonstrate that cis-acting elements in the 5'-flanking region present in the transgene confer correct tissue specificity and inducible expression in mature T cells and their precursors in response to antigen, IL-1, and IL-2. In a complementary approach, we screened the 5' end of the endogenous IL-2R alpha gene for DNase-I hypersensitive sites. We found three lymphocyte specific DNase-I hypersensitive sites. Two, at -0.05 and -5.3 kilobase pairs, are present in resting T cells. A third site appears at -1.35 kilobase pairs in activated T cells. It co-localizes with IL-2-responsive elements identified by transient transfection experiments.
Resumo:
Although Colombia presents an enormous biological diversity, few studies have been conducted on the population genetics of Trypanosoma cruzi. This study was carried out with 23 Colombian stocks of this protozoa analyzed for 13 isoenzymatic loci. The Hardy-Weinberg equilibrium, the genetic diversity and heterogeneity, the genetic relationships and the possible spatial structure of these 23 Colombian stocks of T. cruzi were estimated. The majority of results obtained are in agreement with a clonal population structure. Nevertheless, two aspects expected in a clonal structure were not discovered in the Colombian T. cruzi stocks. There was an absence of given zymodemes over-represented from a geographical point of view and the presumed temporal stabilizing selective phenomena was not observed either in the Colombian stocks sampled several times through the years of the study. Some hypotheses are discussed in order to explain the results found.
Resumo:
Once known some biological characteristics of six Trypanosoma cruzi strains, randomly amplified polymorphic DNA (RAPD) analysis was made. Cluster analysis by UPGMA (unweighted pair group method analysis) was then applied both to biological parameters and RAPD profiles. Inspection of the UPGMA phenograms indicates identical clusters, so supporting that usefulness of biological parameters to characterization of T. cruzi strains still remains.
Resumo:
Twenty one Trypanosoma cruzi stocks from humans, domiciliary triatomines and one sylvatic animal of different areas of Paraguay were subjected to isoenzyme analysis. Thirteen enzyme systems (15 loci in total) were studied. MN cl2 (clonets 39) and SO34 cl4 (clonets 20) were used as references. Relationships between stocks were depicted by an UPGMA dendrogram constructed using the Jaccard´s distances matrix. Among the Paraguayan stocks 14 zymodemes were identified (Par1 to Par14), Par 5 being the most frequent. Polymorphism rate and clonal diversity were 0.73 and 0.93, respectively. Average number of alleles per polymorphic locus was 2.5 (range 2-4). These measurements show a high diversity, which is confirmed by the dendrogram topology. All stocks belong to the same lineage, as MN cl2 reference strain (T. cruzi II). Moreover three distinct subgroups were identified and two of them correspond to Brazilian and Bolivian zymodemes, respectively. The third subgroup, the most common in Paraguay, is related to Tulahuen stock. The large geographical distribution of some zymodemes agrees with the hypothesis of clonality for T. cruzi populations. However sample size was not adequate to detect genetic recombination in any single locality.
Resumo:
Mapping the Issues: HIV and Other Sexually Transmitted Infections in the United Kingdom 2005
Resumo:
OBJECTIVE: Insulin-like growth factor-I (IGF-I) is an important regulator of fetal growth and its bioavailability depends on insulin-like growth factor binding proteins (IGFBPs). Genes coding for IGF-I and IGFBP3 are polymorphic. We hypothesized that either amniotic fluid protein concentration at the beginning of the second trimester or genotype of one of these two genes could be predictive of abnormal fetal growth. STUDY DESIGN: Amniotic fluid samples (14-18 weeks of pregnancy) from 123 patients with appropriate for gestational age (AGA) fetuses, 39 patients with small for gestational age (SGA) fetuses and 34 patients with large for gestational age (LGA) were analyzed. Protein concentrations were evaluated by ELISA and gene polymorphisms by PCR. RESULTS: Amniotic fluid IGFBP3 concentrations were significantly higher in SGA compared to AGA group (P=0.030), and this was even more significant when adjusted to gestational age at the time of amniocentesis and other covariates (ANCOVA analysis: P=0.009). Genotypic distribution of IGF-I variable number of tandem repeats (VNTR) polymorphism was significantly different in SGA compared to AGA group (P=0.029). 19CA/20CA genotype frequency was threefold decreased in SGA compared to AGA group and the risk of SGA occurrence of this genotype was decreased accordingly: OR=0.289, 95%CI=0.1-0.9, P=0.032. Genotype distribution of IGFBP3(A-202C) polymorphism was similar in all three groups. CONCLUSIONS: High IGFBP3 concentrations in amniotic fluid at the beginning of the second trimester are associated with increased risks of SGA while 19CA/20CA genotype at IGF-I VNTR polymorphism is associated with reduced risks of SGA. Neither IGFBP3 concentrations, nor IGF-I/IGFBP3 polymorphisms are associated with modified risks of LGA.
Resumo:
The subthalamic nucleus (STN) is a small, glutamatergic nucleus situated in the diencephalon. A critical component of normal motor function, it has become a key target for deep brain stimulation in the treatment of Parkinson's disease. Animal studies have demonstrated the existence of three functional sub-zones but these have never been shown conclusively in humans. In this work, a data driven method with diffusion weighted imaging demonstrated that three distinct clusters exist within the human STN based on brain connectivity profiles. The STN was successfully sub-parcellated into these regions, demonstrating good correspondence with that described in the animal literature. The local connectivity of each sub-region supported the hypothesis of bilateral limbic, associative and motor regions occupying the anterior, mid and posterior portions of the nucleus respectively. This study is the first to achieve in-vivo, non-invasive anatomical parcellation of the human STN into three anatomical zones within normal diagnostic scan times, which has important future implications for deep brain stimulation surgery.
Resumo:
T cell clones were derived from peripheral blood mononuclear cells of Schistosoma haematobium infected and uninfected individuals living in an endemic area. The clones were stimulated with S. haematobium worm and egg antigens and purified protein derivative. Attempts were made to classify the T cell clones according to production of the cytokines IL-4, IL-5 and IFN-gamma. All the T cell clones derived were observed to produce cytokines used as markers for the classification of Th1/Th2 subsets. However, the 'signature' cytokines marking each subset were produced at different levels. The classification depended on the dominating cytokine type, which was having either Th0/1 or Th0/2 subsets. The results indicated that no distinct cytokine profiles for polarisation of Th1/Th2 subsets were detected in these S. haematobium infected humans. The balance in the profiles of cytokines marking each subset were related to infection and re-infection status after treatment with praziquantel. In the present study, as judged by the changes in infection status with time, the T cell responses appeared to be less stable and more dynamic, suggesting that small quantitative changes in the balance of the cytokines response could result in either susceptibility or resistant to S. haematobium infection.
Resumo:
Cytotoxic CD8 T cells exert their antiviral and antitumor activity primarily through the secretion of cytotoxic granules. Degranulation activity and cytotoxic granules (perforin plus granzymes) generally define CD8 T cells with cytotoxic function. In this study, we have investigated the expression of granzyme K (GrmK) in comparison to that of GrmA, GrmB, and perforin. The expression of the cytotoxic granules was assessed in virus-specific CD8 T cells specific to influenza virus, Epstein-Barr virus (EBV), cytomegalovirus (CMV), or human immunodeficiency virus type 1 (HIV-1). We observed a dichotomy between GrmK and perforin expression in virus-specific CD8 T cells. The profile in influenza virus-specific CD8 T cells was perforin(-) GrmB(-) GrmA(+/-) GrmK(+); in CMV-specific cells, it was perforin(+) GrmB(+) GrmA(+) GrmK(-/+); and in EBV- and HIV-1-specific cells, it was perforin(-/+) GrmB(+) GrmA(+) GrmK(+). On the basis of the delineation of memory and effector CD8 T cells with CD45RA and CD127, the GrmK(+) profile was associated with early-stage memory CD8 T-cell differentiation, the perforin(+) GrmB(+) GrmA(+) profile with advanced-stage differentiation, and the GrmB(+) GrmA(+) Grmk(+) profile with intermediate-stage differentiation. Furthermore, perforin and GrmB but not GrmA and GrmK correlated with cytotoxic activity. Finally, changes in antigen exposure in vitro and in vivo during primary HIV-1 infection and vaccination modulated cytotoxic granule profiles. These results advance our understanding of the relationship between distinct profiles of cytotoxic granules in memory CD8 T cells and function, differentiation stage, and antigen exposure.