952 resultados para MALE RATS
Resumo:
The aim of this study was to validate a non-invasive protocol to determine aerobic and anaerobic capacity of treadmill running rats. Thirteen male Wistar rats (90 days old) were submitted to 4 exercise tests, consisting of running at 25, 30, 35 and 40 m min-1, continuously until exhaustion. For the critical velocity (CV) and anaerobic running capacity (ARC) estimations, the hyperbolic curve (velocity versus time to exhaustion (tlim)) was linearized to V= CV+ARC/tlim, where the CV and ARC were linear and slope coefficients, respectively. In order to verify if the CV was the maximal aerobic intensity, the rats were submitted to the maximal lactate steady state test (MLSS) composed of three 25-minute tests of continuous running trials at 15, 20 and 25 m min-1, with blood collection every 5 minutes. The CV was obtained at 22.8±0.7 m min-1 and the ARC, at 26.80±2.77 m. The MLSS was observed at 20m min-1, with blood lactate 3.84 ± 0.31 mmol L-1. There was a progressive increase in lactate concentration at 25 m min-1. The CV and MLSS were different, but presented a high and significant correlation (r=0.81). These results indicate that the non-invasive protocol can be used for physical evaluation of aerobic running rats, but the ARC should still be further investigated.
Resumo:
Background: This study compared the influence of fasting/refeeding cycles and food restriction on rat myocardial performance and morphology. Methods: Sixty-day-old male Wistar rats were submitted to food ad libitum (C), 50% food restriction (R50), and fasting/refeeding cycles (RF) for 12 weeks. Myocardial function was evaluated under baseline conditions and after progressive increase in calcium and isoproterenol. Myocardium ultrastructure was examined in the papillary muscle. Results: Fasting/refeeding cycles maintained rat body weight and left ventricle weight between control and food-restricted rats. Under baseline conditions, the time to peak tension (TPT) was more prolonged in R50 than in RF and C rats. Furthermore, the maximum tension decline rate (-dT/dt) increased less in R50 than in RF with calcium elevation. While the R50 group showed focal changes in many muscle fibers, such as the disorganization or loss of myofilaments, polymorphic mitochondria with disrupted cristae, and irregular appearance or infolding of the plasma membrane, the RF rats displayed few alterations such as loss or disorganization of myofibrils. Conclusion: Food restriction promotes myocardial dysfunction, not observed in RF rats, and higher morphological damage than with fasting/refeeding. The increase in TPT may be attributed possibly to the disorganization and loss of myofibrils; however, the mechanisms responsible for the alteration in -dT/dt in R50 needs to be further clarified. © 2010 Elsevier Inc. All rights reserved.
Resumo:
Excessive and chronic alcohol intake leads to a lower hepatic vitamin A status by interfering with vitamin A metabolism. Dietary provitamin A carotenoids can be converted into vitamin A mainly by carotenoid 15,15′-monooxygenase 1 (CMO1) and, to a lesser degree, carotenoid 9′10′-monooxygenase 2 (CMO2). CMO1 has been shown to be regulated by several transcription factors, such as the PPAR, retinoid X receptor, and thyroid receptor (TR). The regulation of CMO2 has yet to be identified. The impact of chronic alcohol intake on hepatic expressions of CMO1 and CMO2 and their related transcription factors are unknown. In this study, Fischer 344 rats were pair-fed either a liquid ethanol Lieber-DeCarli diet (n = 10) or a control diet (n = 10) for 11 wk. Hepatic retinoid concentration and expressions of CMO1, CMO2, PPARγ, PPARα, and TRβ as well as plasma thyroid hormones levels were analyzed. We observed that administering alcohol decreased hepatic retinoid levels but increased mRNA concentrations of CMO1, CMO2, PPARγ, PPARα, and TRβ and upregulated protein levels of CMO2, PPARγ, and PPARα. There was a positive correlation of PPARγ with CMO1(r = 0.89; P<0.0001) and both PPARγ and PPARα with CMO2 (r = 0.72, P< 0.001 and r = 0.62, P< 0.01, respectively). Plasma thyroid hormone concentrations did not differ between the control rats and alcohol-fed rats. This study suggests that chronic alcohol intake significantly upregulates hepatic expression of CMO1 and, to a much lesser extent, CMO2. This process may be due to alcohol-induced PPARγ expression and lower vitamin A status in the liver. © 2010 American Society for Nutrition.
Resumo:
The aim of this study was to develop an experimental protocol for endurance swimming periodization training in rats similar to high performance training in humans, and compare it to continuous training. Three groups of male Wistar rats (90 days old) were allocated to Sedentary Control (SC); Continuous Training (CT); and Periodized Experimental Training (PET) groups. PET and CT trained 5 days/week, over five weeks, CT: continuous training supporting a 5% body mass (bm) load for 40 min/day; PET: training subdivided into basic, specific, and taper periods, with overload changed daily (volume-intensity, continuous, and interval training). Total training overload was quantified (% bm X exercise time in training session) and equalized for the two trained groups. Glucose ([ 3H]2-deoxyglucose) uptake, incorporation to glycogen (synthesis), glucose oxidation (CO 2 production), and lactate production from [U- 14C]glucose by soleus muscle strips incubated in presence of insulin (100μU/mL) were evaluated 48h after the last training session. The load equivalent at 5.5mM blood lactate concentration ([La-5.5]) was determined in the incremental test. Lactate production was similar in all groups. PET presented higher glucose uptake (59%) than SC, and higher glycogen synthesis (51 and 22%) and glucose oxidation (147 and 178%) than SC and CT, respectively. CT presented higher glycogen synthesis rates (23%) than SC. Load [La-5.5] was similar between trained groups and higher than SC. PET presented higher values for glucose metabolism than CT and SC. These results open up new perspectives for studying training methods used in high performance sport through swimming exercise in rats.
Resumo:
Aims: The effect of exercise training (ET) on vascular responsiveness in diabetes mellitus has been largely well studied. However, limited studies have investigated the effects of ET on functional responses of the corpus cavernosum (CC) in diabetic animals. Therefore, the aim of this study was to investigate whether prior ET prevents the impairment of erectile function in streptozotocin-induced diabetic rats. Main methods: Rats were exercised for four weeks prior to the induction of diabetes, and then again for another 4 weeks thereafter. Concentration-response curves to acetylcholine, sodium nitroprusside, Y-27632, BAY 412272 and phenylephrine (PE) were obtained in CC. The excitatory and inhibitory effects of electrical-field stimulation were also evaluated. Key findings: Plasma SOD levels were markedly decreased in the sedentary diabetic group (D-SD) as compared to control sedentary animals (C-SD), approximately 53% (P < 0.05) and this reduction was restored in trained diabetic animals. Physical training restored the impairment of endothelium-dependent and -independent relaxation responses seen in the D-SD group. The potency values for Y-27632 in the CC were significantly reduced in the D-SD group, which was reversed by physical training. The impairment of electrical-field stimulation (EFS)-induced relaxation seen in the D-SD group was restored by physical training. On the other hand, both EFS-induced contractions and concentration-response curves to PE in cavernosal strips were not modified by either diabetes or physical training. Significance: Practice of regular physical exercise may be an important approach in preventing erectile dysfunction associated with diabetes mellitus by re-establishment of the balance between NO production and its inactivation. © 2010 Elsevier Inc. All rights reserved.
Resumo:
Chronic and excessive alcohol consumption has been related to an increased risk of several cancers, including that of the liver; however, studies in animal models have yet to conclusively determine whether ethanol acts as a tumor promoter in hepatic tumorigenesis. We examined whether prolonged alcohol consumption could act as a hepatic tumor promoter after initiation by diethylnitrosamine (DEN) in a rat model. Male Sprague-Dawley rats were injected with 20 mg DEN/kg body weight 1 wk before introduction of either an ethanol liquid diet or an isoenergic control liquid diet. Hepatic pathological lesions, hepatocyte proliferation, apoptosis, PPARα and PPARγ, and plasma insulin-like growth factor 1 (IGF-1) levels were assessed after 6 and 10 mo. Mean body and liver weights, plasma IGF-1 concentration, hepatic expressions of proliferating cellular nuclear antigen and Ki-67, and cyclin D1 in ethanol-fed rats were all significantly lower after 10 mo of treatment compared with control rats. In addition, levels of hepatic PPARγ protein, not PPARα, were significantly higher in the ethanol-fed rats after prolonged treatment. Although ethanol feeding also resulted in significantly fewer altered hepatic foci, hepatocellular adenoma was detected in ethanol-fed rats at 10 mo, but not in control rats given the same dose of DEN. Together, these results indicate that chronic, excessive ethanol consumption impairs normal hepatocyte proliferation, which is associated with reduced IGF-1 levels, but promotes hepatic carcinogenesis. © 2011 American Society for Nutrition.
Resumo:
A swimming periodized experimental training model in rats in which different training protocols (TP) were classified in aerobic (A) and anaerobic (AN) intensity levels. The purpose of the present study was to verify if the classification of the TP used in the periodized training experimental model presented the blood lactate concentration [La] response adequate to the aerobic and anaerobic intensities levels. Twenty three male Wistar rats were divided into three groups. Two groups of swimming training (continuous, CT, n = 7, and periodized training, PET, n = 7) rats were evaluated during 5 weeks in eight different TP (TP-1 to TP-8) through the analysis of the [La] response. The third group was the sedentary control (SC, n = 9). The TP were classified in five intensity levels, three aerobic (A-1, A-2, A-3) and two anaerobic (AN-1, AN-2). Analysis of variance (ANOVA one-way, P<0.05) indicated significant differences in the [La] among the TP and among the five intensity levels. All TP of the A-2 and A-3 intensity levels differed from the A-1 and AN-1. The A-1 and AN-1 also differed among them. These findings demonstrate that the TP were classified properly at different levels of aerobic and anaerobic intensities, as based on the [La] response in a way similar to that of high performance swimming with humans. The results offer new perspectives for the study of exercise training in swimming rats at different levels intensity for performance or for health.
Resumo:
Alterations in liver functions are common among diabetic patients, and many symptoms in the liver have been reported, including changes in glycogen stores and in the amount of collagen fibers. The practice of physical training and its morphological effects in this organ, however, are scarcely studied. In order to observe the morphological effects of alloxan-induced diabetes and the alterations arising from the practice of long-term chronic physical training in the liver, samples were collected and processed, and then analyzed by means of the histochemical techniques Periodic Acid-Schiff and Picrosirius-Hematoxylin, and ultrastructural cytochemical test of Afzelius. Through evaluation of the tissue, it was observed a drastic reduction in hepatic glycogen stores of sedentary diabetics, recovered in trained diabetic rats. Furthermore, it was detected a decrease in the content of perisinusoidal collagen fibers in the diabetic liver, also recovered due to the development of a training protocol. On ultrastructural level, cytochemical analysis confirmed the loss of glycogen and the recovery obtained by training. In conclusion, the practice of a long-term chronic physical training protocol may be considered an important assistant in the treatment of diabetes, mitigating the occurrence of possible damages to liver tissue. © 2011 Elsevier Ltd.
Resumo:
A simple and applicable method for non-exhaustive aerobic evaluation in running rats is described. Wistar rats were submitted to running test at different velocities (10, 15, 20, 25 m/min) with 48 h recovery among them. At each velocity, the rats ran two bouts of 5 min with 2 min of rest between bouts. Blood samples were collected at the end of each bout for lactate determination. For each intensity, delta lactate was calculated and using deltas obtained by four tests, an individual linear interpolation was plotted. The y-intercept of linear interpolation was the null delta lactate equivalent to the critical velocity (CV). To verify the lactate stabilization at CV, the animals were submitted to 25 min of continuous exercise (15, 20, 25 m/min), with blood collection every 5 min. The estimated CV was 16.6±0.7 m/min, with significant linear regressions (R=0.90±0.03). The rats presented maximal lactate steady state (MLSS) at 3.9±0.4 mmol/L, at 20 m/min. The CV was less than MLSS but significantly correlated with this parameter (r=0.78). This non-exhaustive test seems to be valid for the aerobic evaluation of sedentary rats and this protocol underestimates the MLSS in 20%. This test seems to be the interesting method for the evaluation of rats submitted to acute exercise or physical training.
Resumo:
Alchornea triplinervia (Spreng.) Muell. Arg (Euphorbiaceae) is a medicinal plant commonly used by people living in the Cerrado region of Brazil to treat gastrointestinal ulcers. We previously described the gastroprotective action of methanolic extract (ME) of Alchornea triplinervia and the ethyl acetate fraction (EAF) in increasing of prostaglandin E 2 (PGE 2) gastric levels in the mucosa. In this work we evaluated the effect of EAF in promoting the healing process in rats with acetic acid-induced gastric ulcers. In addition, toxicity was investigated during treatment with EAF. After 14 days of treatment with EAF, the potent stimulator of gastric cell proliferation contributed to the acceleration of gastric ulcer healing. Upon immunohistochemical analysis, we observed a pronounced expression of COX-2, mainly in the submucosal layer. The 14-day EAF treatment also significantly increased the number of neutrophils in the gastric mucosa regeneration area. The EAF induced angiogenesis on gastric mucosa, observed as an increase of the number of blood vessels supplying the stomach in rats treated with EAF. Oral administration for 14 days of the ethyl acetate fraction from Alchornea triplinervia accelerated the healing of gastric ulcers in rats by promoting epithelial cell proliferation, increasing the number of neutrophils and stimulation of mucus production. This fraction, which contained mainly phenolic compounds, contributed to gastric mucosa healing. © 2011 by the authors; licensee MDPI, Basel, Switzerland.
Resumo:
PURPOSE: To present fundamental anatomical aspects and technical skills necessary to urethra and urinary bladder catheterization in female mice and rats. METHODS: Urethral and bladder catheterization has been widely utilized for carcinogenesis and cancer research and still remains very useful in several applications: from toxicological purposes as well as inflammatory and infectious conditions to functional aspects as bladder dynamics and vesicoureteral reflux, among many others. RESULTS: Animal models are in the center of translational research and those involving rodents are the most important nowadays due to several advantages including human reproducibility, easy handling and low cost. CONCLUSIONS: Although technical and anatomical pearls for rodent urethral and bladder access are presented as tackles to the advancement of lower urinary tract preclinical investigation in a broaden sight, restriction to female animals hampers the male microenvironment, demanding future advances.
Resumo:
Background: The prediction of the ventricular remodeling process after acute myocardial infarction (AMI) may have important clinical implications. Objetive: To analyze echocardiographic variables predictors of remodeling in the infarction model in rats. Methods: The animals underwent echocardiography in two moments, five days and three months after infarction (AMI group) or sham surgery (control group). Linear regression was used to identify the echocardiographic variables on the fifth day after the infarction, which were predictive of remodeling after three months of coronary occlusion. We considered as a criterion of remodeling in this study, the values of left ventricular diastolic diameter (LVDD) after three months of infarction. Results: The infarction induced increase in the left chambers, associated with changes in systolic and diastolic functions. The variables body weight, left ventricular wall stress index (LVWSI), systolic area (SA), diastolic area (DA), LVDD, left ventricular systolic diameter (LVSD), fractional area change (FAC), ejection fraction (EF), fractional shortening (%Short), posterior wall shortening velocity (PWSV) and infarct size assessed five days after infarction were predictors of LVDD after three months. At the multivariate regression analysis, we included the size of infarction, the LVWSI and PWSV. The LVWSI (coefficient: 4.402, standard error: 2.221, p = 0.05), but not the size of infarction and PWSV, was a predictor of remodeling after three months of infarction. Conclusion: LVPSI was an independent predictor of remodeling three months after the myocardial infarction and could be included in the clinical stratification after the coronary occlusion.
Resumo:
Background: There is increasing interest in non-pharmacological control of cholesterol and triglyceride levels in the plasma and diet-drug association represent an important area of studies. The objective of this study was to observe the hypocholesterolemic effect of soybean β-conglycinin (7S protein) alone and combined with fenofibrate and rosuvastatin, two hypolipidemic drugs. Methods. The protein and drugs were administered orally once a day to rats and the effects were evaluated after 28 days. Wistar rats were divided into six groups (n = 9): hypercholesterolemic diet (HC), HC+7S protein (300 mg.kg-1 day-1) (HC-7S), HC+fenofibrate (30 mg.kg-1 day-1)(HC-FF), HC+rosuvastatin (10 mg.kg-1 day-1)(HC-RO), HC+7S+fenofibrate (HC-7S-FF) and HC+7S+rosuvastatin (HC-7S-RO). Results: Animals in HC-7S, HC-FF and HC-RO exhibited reductions of 22.9, 35.8 and 18.8% in total plasma cholesterol, respectively. In HC-7S-FF, animals did not show significant alteration of the level in HC+FF while the group HC-7S-RO showed a negative effect in comparison with groups taking only protein (HC-7S) or drug (HC-RO). The administration of the protein, fenofibrate and rosuvastatin alone caused increases in the plasma HDL-C of the animals, while the protein-drug combinations led to an increase compared to HC-FF and HC-RO. The plasma concentration of triacylgycerides was significantly reduced in the groups without association, while HC-7S-FF showed no alteration and HC-7S-RO a little reduction. Conclusion: The results of our study indicate that conglycinin has effects comparable to fenofibrate and rosuvastatin on the control of plasma cholesterol, HDL-C and triacylglycerides, when given to hypercholesterolemic rats, and suggests that the association of this protein with rosuvastatin alters the action of drug in the homeostasis of cholesterol. © 2012 Ferreira et al; licensee BioMed Central Ltd.
Resumo:
Purpose: The purpose of this paper is to determine the effects of isolated soy glycinin (11S) on lipid metabolism in animals subjected to a hypercholesterolemic diet. Design/methodology/approach: Male Wistar rats were kept in individual cages under appropriate conditions. The animals were divided into three groups (n=9): normal diet (STD) given a diet containing casein as protein source, recommended in AIN-93M; hypercholesterolemic (HC) fed a normal diet with 1 per cent cholesterol and 0.5 per cent cholic acid; and hypercholesterolemic+glycinin (HC+11S), fed a hypercholesterolemic diet, plus 11S soy protein (300 mg/kg/day), dissolved in saline and administered by gavage. After 28 days, the animals were sacrificed and blood and liver removed for biochemical analysis of total cholesterol (TC), HDL-cholesterol (HDL-C) and triglycerides (TG) in the plasma, hepatic TC and TG. Findings: A single daily dose of glycinin given to the hypercholesterolemic group demonstrated its functional role, particularly in raising HDL-C and reducing triglycerides in the liver. Originality/value: This study demonstrates the action of the 11S globulin in soybean as a serum lipid lowering agent, in addition to its nutritional properties, especially in raising the HDL-C. © Emerald Group Publishing Limited.
Resumo:
AC Biosusceptometry (ACB) was previously employed towards recording gastrointestinal motility. Our data show a reliable and successful evaluation of gastrointestinal transit of liquid and solid meals in rats, considering the methods scarcity and number of experiments needed to endorsement of drugs and medicinal plants. ACB permits real time and simultaneous experiments using the same animal, preserving the physiological conditions employing both meals with simplicity and accuracy. © 2012 Quini et al.; licensee BioMed Central Ltd.