907 resultados para Localised, microneedles, Ocular, Drug Delivery, Macromolecule
Resumo:
In epithelial/endothelial barriers, claudins form tight junctions, seal the paracellular cleft, and limit the uptake of solutes and drugs. The peptidomimetic C1C2 from the C-terminal half of claudin-1's first extracellular loop increases drug delivery through epithelial claudin-1 barriers. However, its molecular and structural mode of action remains unknown. In the present study, >100 μM C1C2 caused paracellular opening of various barriers with different claudin compositions, ranging from epithelial to endothelial cells, preferentially modulating claudin-1 and claudin-5. After 6 h incubation, C1C2 reversibly increased the permeability to molecules of different sizes; this was accompanied by redistribution of claudins and occludin from junctions to cytosol. Internalization of C1C2 in epithelial cells depended on claudin-1 expression and clathrin pathway, whereby most C1C2 was retained in recyclosomes >2 h. In freeze-fracture electron microscopy, C1C2 changed claudin-1 tight junction strands to a more parallel arrangement and claudin-5 strands from E-face to P-face association - drastic and novel effects. In conclusion, C1C2 is largely recycled in the presence of a claudin, which explains the delayed onset of barrier and junction loss, the high peptide concentration required and the long-lasting effect. Epithelial/endothelial barriers are specifically modulated via claudin-1/claudin-5, which can be targeted to improve drug delivery.
Resumo:
INTRODUCTION: Hemodynamic parameters in zebrafish receive increasing attention because of their important role in cardiovascular processes such as atherosclerosis, hematopoiesis, sprouting and intussusceptive angiogenesis. To study underlying mechanisms, the precise modulation of parameters like blood flow velocity or shear stress is centrally important. Questions related to blood flow have been addressed in the past in either embryonic or ex vivo-zebrafish models but little information is available for adult animals. Here we describe a pharmacological approach to modulate cardiac and hemodynamic parameters in adult zebrafish in vivo. MATERIALS AND METHODS: Adult zebrafish were paralyzed and orally perfused with salt water. The drugs isoprenaline and sodium nitroprusside were directly applied with the perfusate, thus closely resembling the preferred method for drug delivery in zebrafish, namely within the water. Drug effects on the heart and on blood flow in the submental vein were studied using electrocardiograms, in vivo-microscopy and mathematical flow simulations. RESULTS: Under control conditions, heart rate, blood flow velocity and shear stress varied less than ± 5%. Maximal chronotropic effects of isoprenaline were achieved at a concentration of 50 μmol/L, where it increased the heart rate by 22.6 ± 1.3% (n = 4; p < 0.0001). Blood flow velocity and shear stress in the submental vein were not significantly increased. Sodium nitroprusside at 1 mmol/L did not alter the heart rate but increased blood flow velocity by 110.46 ± 19.64% (p = 0.01) and shear stress by 117.96 ± 23.65% (n = 9; p = 0.03). DISCUSSION: In this study, we demonstrate that cardiac and hemodynamic parameters in adult zebrafish can be efficiently modulated by isoprenaline and sodium nitroprusside. Together with the suitability of the zebrafish for in vivo-microscopy and genetic modifications, the methodology described permits studying biological processes that are dependent on hemodynamic alterations.
Resumo:
To meet the requirements for rapid tumor growth, a complex array of non-neoplastic vascular, fibroblastic, and immune cells are recruited to the tumor microenvironment. Understanding the origin, composition, and mechanism(s) for recruitment of these stromal components will help identify areas for therapeutic intervention. Previous findings have suggested that ex-vivo expanded bone marrow-derived MSC home to the sites of tumor development, responding to inflammatory signals and can serve as effective drug delivery vehicles. Therefore, we first sought to fully assess conditions under which MSC migrate to and incorporate into inflammatory microenvironments and the consequences of modulated inflammation. MSC delivered to animals bearing inflammatory insults were monitored by bioluminescence imaging and displayed specific tropism and selective incorporation into all tumor and wound sites. These findings were consistent across routes of tumor establishment, MSC administration, and immunocompetence. MSC were then used as drug delivery vehicles, transporting Interferon β to sites of pancreatic tumors. This therapy was effective at inhibiting pancreatic tumor growth under homeostatic conditions, but inhibition was lost when inflammation was decreased with CDDO-Me combination treatment. Next, to examine the endogenous tumor microenvironment, a series of tissue transplant experiments were carried out in which tissues were genetically labeled and engrafted in recipients prior to tumor establishment. Tumors were then analyzed for markers of tumor associated fibroblasts (TAF): α-smooth muscle actin (α-SMA), nerve glia antigen 2 (NG2), fibroblast activation protein (FAP), and fibroblast specific protein (FSP) as well as endothelial marker CD31 and macrophage marker F4/80. We determined the majority of α-SMA+, NG2+ and CD31+ cells were non-bone marrow derived, while most FAP+, FSP+, and F4/80+ cells were recruited from the bone marrow. In accord, transplants of prospectively isolated BM MSC prior to tumor development indicated that these cells were recruited to the tumor microenvironment and co-expressed FAP and FSP. In contrast, fat transplant experiments revealed recruited fat derived cells co-expressed α-SMA, NG2, and CD31. These results indicate TAF are a heterogeneous population composed of subpopulations with distinct tissues of origin. These models have provided a platform upon which further investigation into tumor microenvironment composition and tests for candidate drugs can be performed. ^
Resumo:
Cellular therapies, as neuronal progenitor (NP) cells grafting, are promising therapies for patients affected with neurodegenerative diseases like Creutzfeldt-Jakob Disease (CJD). At this time there is no effective treatment or cure for CJD. The disease is inevitably fatal and affected people usually die within months of the appearance of the first clinical symptoms. Compelling evidence indicate that the hallmark event in the disease is the conversion of the normal prion protein (termed PrPC) into the disease-associated, misfolded form (called PrPSc). Thus, a reasonable therapeutic target would be to prevent PrP misfolding and prion replication. This strategy has been applied with poor results since at the time of clinical intervention substantial brain damage has been done. It seems that a more effective treatment aimed at patients with established symptoms of CJD would need to stop further brain degeneration or even recover some of the previously lost brain tissue. The most promising possibility to recover brain tissue is the use of NPs that have the potential to replenish the nerve cells lost during the early stages of the disease. Advanced cellular therapies, beside their potential for cell replacement, might be used as biomaterials for drug delivery in order to stimulate cell survival or the resolution the disease. Also, implanted cells can be genetically manipulated to correct abnormalities causing disease or to make them more resistant to the toxic microenvironments present in damaged tissue. In recent years cell engineering has been within the scope of the scientific and general community after the development of technologies able to “de-differentiate” somatic cells into induced-pluripotent stem (IPS) cells. This new tool permits the use of easy-to-reach cells like skin or blood cells as a primary material to obtain embryonic stem-like cells for cellular therapies, evading all ethical issues regarding the use of human embryos as a source of embryonic stem cells. The complete work proposes to implant IPS-derived NP cells into the brain of prion-infected animals to evaluate their therapeutic potential. Since it is well known that the expression of prion protein in the cell membrane is necessary for PrPSc mediated toxicity, we also want to determine if NPs lacking the prion protein have better survival rates once implanted into sick animals. The main objective of this work is to develop implantable neural precursor from IPS coming from animals lacking the prion protein. Specific aim 1: To develop and characterize cellular cultures of IPS cells from prp-/- mice. Fibroblasts from prp-/- animals will be reprogrammed using the four Yamanaka factors. IPS colonies will be selected and characterized by immunohistochemistry for markers of pluripotency. Their developmental capabilities will be evaluated by teratoma and embryoid body formation assays. Specific aim 2: To differentiate IPS cells to a neuronal lineage. IPS cells will be differentiated to a NP stage by the use of defined media culture conditions. NP cells will be characterized by their immunohistochemical profile as well as by their ability to differentiate into neuronal cells. Specific aim 3: Cellular labeling of neuronal progenitors cells for in vitro traceability. In order to track the cells once implanted in the host brain, they will be tagged with different methods such as lipophilic fluorescent tracers and transduction with GFP protein expression.
Resumo:
Nanomedicine is an innovative field of science which has recently generated many drug delivery platforms with exciting results. The great potential of these strategies rely on the unique characteristics of the devices at the nano-scale in terms of long time circulation in the blood stream, selective accumulation at the lesions sites, increased solubility in aqueous solutions, etc. Herein we report on a new drug delivery system known as a multistage system which is comprised of non-spherical, mesoporous silicon particles loaded with second stage nanoparticles. The rationally designed particle shape, the possibility to modulate the surface properties and the degree of porosity allow these carriers to be optimized for vascular targeting and to overcome the numerous biological barriers found in drug delivery. In this study we investigated the intra and inter cellular trafficking of the multistage system in endothelial cells bringing evidence of its bio-compatibility as well as its ability to perform multiple intra and inter cellular tasks. Once internalized in cells, the multi-particle construct is able to dissociate, localizing in different subcellular compartments which can be targeted for exocytosis. In particular the second stage nanoparticles were found to be secreted in microvesicles which can act as mediators of transfer of particles across the endothelium and between different endothelial and cancer cells.
Resumo:
Nanotechnology represents an area of particular promise and significant opportunity across multiple scientific disciplines. Ongoing nanotechnology research ranges from the characterization of nanoparticles and nanomaterials to the analysis and processing of experimental data seeking correlations between nanoparticles and their functionalities and side effects. Due to their special properties, nanoparticles are suitable for cellular-level diagnostics and therapy, offering numerous applications in medicine, e.g. development of biomedical devices, tissue repair, drug delivery systems and biosensors. In nanomedicine, recent studies are producing large amounts of structural and property data, highlighting the role for computational approaches in information management. While in vitro and in vivo assays are expensive, the cost of computing is falling. Furthermore, improvements in the accuracy of computational methods (e.g. data mining, knowledge discovery, modeling and simulation) have enabled effective tools to automate the extraction, management and storage of these vast data volumes. Since this information is widely distributed, one major issue is how to locate and access data where it resides (which also poses data-sharing limitations). The novel discipline of nanoinformatics addresses the information challenges related to nanotechnology research. In this paper, we summarize the needs and challenges in the field and present an overview of extant initiatives and efforts.
Resumo:
The autocrine/paracrine peptide signaling molecules such as growth factors have many promising biologic activities for clinical applications. However, one cannot expect specific therapeutic effects of the factors administered by ordinary drug delivery systems as they have limited target specificity and short half-lives in vivo. To overcome the difficulties in using growth factors as therapeutic agents, we have produced fusion proteins consisting of growth factor moieties and a collagen-binding domain (CBD) derived from Clostridium histolyticum collagenase. The fusion proteins carrying the epidermal growth factor (EGF) or basic fibroblast growth factor (bFGF) at the N terminal of CBD (CBEGF/CBFGF) tightly bound to insoluble collagen and stimulated the growth of BALB/c 3T3 fibroblasts as much as the unfused counterparts. CBEGF, when injected subcutaneously into nude mice, remained at the sites of injection for up to 10 days, whereas EGF was not detectable 24 h after injection. Although CBEGF did not exert a growth-promoting effect in vivo, CBFGF, but not bFGF, strongly stimulated the DNA synthesis in stromal cells at 5 days and 7 days after injection. These results indicate that CBD may be used as an anchoring unit to produce fusion proteins nondiffusible and long-lasting in vivo.
Resumo:
Phospholipids when dispersed in excess water generally form vesicular membrane structures. Cryo-transmission and freeze-fracture electron microscopy are combined here with calorimetry and viscometry to demonstrate the reversible conversion of phosphatidylglycerol aqueous vesicle suspensions to a three-dimensional structure that consists of extended bilayer networks. Thermodynamic analysis indicates that the structural transitions arise from two effects: (i) the enhanced membrane elasticity accompanying the lipid state fluctuations on chain melting and (ii) solvent-associated interactions (including electrostatics) that favor a change in membrane curvature. The material properties of the hydrogels and their reversible formation offer the possibility of future applications, for example in drug delivery, the design of structural switches, or for understanding vesicle fusion or fission processes.
Resumo:
Conjugation of drugs with antibodies to surface endothelial antigens is a potential strategy for drug delivery to endothelium. We studied antibodies to platelet-endothelial adhesion molecule 1 (PECAM-1, a stably expressed endothelial antigen) as carriers for vascular immunotargeting. Although 125I-labeled anti-PECAM bound to endothelial cells in culture, the antibody was poorly internalized by the cells and accumulated poorly after intravenous administration in mice and rats. However, conjugation of biotinylated anti-PECAM (b-anti-PECAM) with streptavidin (SA) markedly stimulated uptake and internalization of anti-PECAM by endothelial cells and by cells expressing PECAM. In addition, conjugation with streptavidin markedly stimulated uptake of 125I-labeled b-anti-PECAM in perfused rat lungs and in the lungs of intact animals after either intravenous or intraarterial injection. The antioxidant enzyme catalase conjugated with b-anti-PECAM/SA bound to endothelial cells in culture, entered the cells, escaped intracellular degradation, and protected the cells against H2O2-induced injury. Anti-PECAM/SA/125I-catalase accumulated in the lungs after intravenous injection or in the perfused rat lungs and protected these lungs against H2O2-induced injury. Thus, modification of a poor carrier antibody with biotin and SA provides an approach for facilitation of antibody-mediated drug targeting. Anti-PECAM/SA is a promising candidate for vascular immunotargeting of bioactive drugs.
Resumo:
The therapeutic application of growth factors to human disease has become closer to reality with the advent of faster means of synthesizing these molecules and novel drug delivery strategies. Epidermal growth factor (EGF) belongs to a large family of molecules with the ability to modulate growth. Purified extracts of EGF have been used clinically to modulate gastrointestinal secretion of hormones and accelerate healing. EGF is also reported to have both vascular smooth muscle contractile and relaxing activity Cardiovascular studies were performed with the bioactive 48-amino acid fragment of human EGF in rodents and primates to determine the effects of EGF on blood pressure and heart rate in conscious animals. Intravenous infusion of EGF induced an initial pressor response in rats followed by a prolonged decrease in blood pressure. In contrast, in monkeys, EGF had dose-related blood pressure-lowering effects only; significant hypotension was observed at doses ranging from 3 to 300 microg/kg i.v. Hypotension was associated with modest tachycardia in both species. To our knowledge, this is the first report of hemodynamic effects of EGF in primates, and it clearly documents that the mitogenic role of growth factors such as EGF is but one aspect of their physiology.
Resumo:
One of the challenges that concerns chemistry is the design of molecules able to modulate protein-protein and protein-ligand interactions, since these are involved in many physiological and pathological processes. The interactions occurring between proteins and their natural counterparts can take place through reciprocal recognition of rather large surface areas, through recognition of single contact points and single residues, through inclusion of the substrates in specific, more or less deep binding sites. In many cases, the design of synthetic molecules able to interfere with the processes involving proteins can benefit from the possibility of exploiting the multivalent effect. Multivalency, widely spread in Nature, consists in the simultaneous formation between two entities (cell-cell, cell-protein, protein-protein) of multiple equivalent ligand-recognition site complexes. In this way the whole interaction results particularly strong and specific. Calixarenes furnish a very interesting scaffold for the preparation of multivalent ligands and in the last years calixarene-based ligands demonstrated their remarkable capability to recognize and inhibit or restore the activity of different proteins, with a high efficiency and selectivity in several recognition phenomena. The relevance and versatility of these ligands is due to the different exposition geometries of the binding units that can be explored exploiting the conformational properties of these macrocycles, the wide variety of functionalities that can be linked to their structure at different distances from the aromatic units and to their intrinsic multivalent nature. With the aim of creating new multivalent systems for protein targeting, the work reported in this thesis regards the synthesis and properties of glycocalix[n]arenes and guanidino calix[4]arenes for different purposes. Firstly, a new bolaamphiphile glycocalix[4]arene in 1,3-alternate geometry, bearing cellobiose, was synthesized for the preparation of targeted drug delivery systems based on liposomes. The formed stable mixed liposomes obtained by mixing the macrocycle with DOPC were shown to be able of exploiting the sugar units emerging from the lipid bilayer to agglutinate Concanavalin A, a lectin specific for glucose. Moreover, always thanks to the presence of the glycocalixarene in the layer, the same liposomes demonstrated through preliminary experiments to be uptaken by cancer cells overexpressing glucose receptors on their exterior surface more efficiently respect to simple DOPC liposomes lacking glucose units in their structure. Then a small library of glycocalix[n]arenes having different valency and geometry was prepared, for the creation of potentially active immunostimulants against Streptococcus pneumoniae, particularly the 19F serotype, one of the most virulent. These synthesized glycocalixarenes bearing β-N-acetylmannosamine as antigenic unit were compared with the natural polysaccharide on the binding to the specific anti-19F human polyclonal antibody, to verify their inhibition potency. Among all, the glycocalixarene based on the conformationally mobile calix[4]arene resulted the more efficient ligand, probably due its major possibility to explore the antibody surface and dispose the antigenic units in a proper arrangement for the interaction process. These results pointed out the importance of how the different multivalent presentation in space of the glycosyl units can influence the recognition phenomena. At last, NMR studies, using particularly 1H-15N HSQC experiments, were performed on selected glycocalix[6]arenes and guanidino calix[4]arenes blocked in the cone geometry, in order to better understand protein-ligand interactions. The glycosylated compounds were studied with Ralstonia solanacearum lectin, in order to better understand the nature of the carbohydrate‐lectin interactions in solution. The series of cationic calixarene was employed with three different acidic proteins: GB1, Fld and alpha synuclein. Particularly GB1 and Fld were observed to interact with all five cationic calix[4]arenes but showing different behaviours and affinities.
Resumo:
Hyaluronan (HA) plays an important role in lung pathophysiology. For this reason it has attracted great attention both as active ingredient and as excipient in treating lung diseases by direct pulmonary HA administration. The aim was the production of highly respirable and flowable HA powders either as a potential carrier for drug delivery or for being delivered directly by inhalation. Engineered sodium hyaluronate powders were produced by spray-drying technique. All the spray-dried powders were characterised in terms of particle size distribution, drug content, morphology and in vitro respirability. HA was successfully formulated with salbutamol sulphate in combination with leucine and highlighted remarkable aerodynamic performance (emitted dose equal to 83 % and FPF % equal to 97.1%). Moreover, HA colloidal solutions were designed and they were spray-dried. In order to improve particle aerodynamic characteristics, different types of excipients were investigated. In particular, stearylamine (5% w/w) allowed to obtain the best performance throughout the experimental set. Finally, in vitro biocompatibility was carried out by MTT assay and High Content Analysis for selected dry powder formulations and starting materials. The assays demonstrated the same outcome by confirming the HA biocompatibility and by producing the same rank of toxicity for the surfactants. The general conclusion of the project is that formulation containing HA and stearyl alcohol represents the best performing formulation.
Resumo:
A nistatina (NYS) é o fármaco de primeira escolha no tratamento da candidíase oral, que frequentemente acomete mais os indivíduos imunocomprometidos e pacientes com outras desordens (diabetes não tratada, neoplasias, imunodeficiências). No mercado brasileiro, a NYS é encontrada na forma de suspensão oral aquosa, onde o procedimento para sua administração consiste em bochechar o medicamento. Apesar de haver a indicação de que se mantenha o contato direto entre fármaco e a mucosa oral, na qual se encontra a Candida spp., o que aumentaria expressivamente o sucesso terapêutico, a suspensão não apresenta tal propriedade. Assim, a NYS que é fármaco com ação efetiva contra a candidíase oral, é considerada pertencente à Classe IV do Sistema de Classificação Biofarmacêutica, ou seja, apresenta baixa solubilidade e baixa permeabilidade. A baixa solubilidade pode comprometer sua disponibilidade na cavidade oral, e consequentemente, sua ação farmacológica. Diante desse quadro, o objetivo do presente trabalho foi o desenvolvimento de dispersões sólidas de NYS para o tratamento da candidíase oral, e sua posterior incorporação em gel mucoadesivo oral, favorecendo a formulação no local de ação. As dispersões sólidas são sistemas farmacêuticos, onde um fármaco pouco solúvel em água encontra-se dispersado em um carreador, no estado sólido. Os carreadores normalmente são hidrofílicos, o que permite que esses sistemas sejam empregados para aumentar a solubilidade aquosa do fármaco. Assim, foram desenvolvidas as dispersões sólidas de NYS, pelo método de eliminação do solvente, empregando como carreadores, lactose, HPMC, poloxamer 407 e poloxamer 188. Essas foram submetidas à caracterização por análise térmica, usando os ensaios de calorimetria exploratória diferencial (DSC) e termogravimetria/termogravimetria derivada (TG/DTG). Dentre essas dispersões sólidas, aquelas que se mostraram com comportamento térmico sugerindo a formação de um novo \"sistema\", foram analisadas por meio de ensaio de solubilidade. Dessa forma, a formulação NYS DS G2 (49) se destacou, pois apresentou maior solubilidade em água (4,484 mg/mL); em pH 5,5 (4,249 mg/mL) e em pH 7,0 (4,293 mg/mL), ou seja, houve um aumento de 1,426 vezes em água; 4,227 vezes em pH 5,5; e 2,743 vezes em pH 7,0. Essa formulação foi, por fim avaliada por difração de raio-X e espectroscopia de infravermelho com transformada de Fourier, técnicas que corroboraram com a análise térmica quanto à indicação de formação da dispersão sólida. Por sua vez, essa dispersão sólida foi incorporada em 4 bases de géis mucoadesivos de carbopol ® 934 PNF, alterando apenas a concentração do polímero (0,5; 1,0; 1,5; 2,0 %p/p). Foi observado que a liberação de NYS DS G2 (49) foi superior, quando comparada à liberação de NYS MP a partir do gel, e através do ensaio de mucoadesão, percebeu-se que os géis desenvolvidos apresentaram propriedades mucoadesivas compatíveis com relatos na literatura, independentemente da quantidade de carbopol ® empregada. As características reológicas foram distintas, e foi observado que as formulações Gel A e Gel B, que possuem menor quantidade de polímero, tiverem um indicativo de comportamento de fluido newtoniano, diferente dos demais, o que pode não ser desejado para esse tipo de forma farmacêutica tópica e semi-sólida. Ao final desse trabalho, pode-se concluir que foi possível desenvolver um sistema farmacêutico na forma de dispersão sólida com maior solubilidade que a NYS pura, e sua incorporação em uma forma farmacêutica mucoadesiva, e que a liberação da NYS na forma DS foi muito superior que o fármaco na forma \"convencional\", o que permite que a NYS esteja mais disponível na cavidade oral, e também junto à mucosa bucal, o que levaria a efeito farmacológico mais efetivo do antifúngico.
Resumo:
O trabalho apresentado foi realizado em duas etapas independentes e baseou-se no estudo de diferentes sistemas nanométricos para viabilizar a aplicação da ftalocianina de cloro alumínio (ClAlPc) na terapia fotodinâmica (TFD) para o tratamento do câncer de pele do tipo melanoma. O fármaco fotossensibilizante (FS) utilizado apresenta propriedades físico-químicas que lhe permitem exercer sua atividade fotodinâmica com excelência, sem a interferência do cromóforo endógeno melanina existente nas células melanocíticas. Para driblar sua elevada hidrofobicidade, ClAlPc foi encapsulada em sistemas nanométricos para administração em meio fisiológico. Inicialmente nanopartículas lipídicas sólidas (NLS) foram desenvolvidas por emulsificação direta, após um estudo de elaboração do diagrama de fases. O compritol foi o lipídio sólido escolhido para compor as NLS, com diferentes concentrações de ClAlPc. Todas as formulações desenvolvidas foram devidamente caracterizadas, com tamanho médio entre 100 e 200 nm, baixa polidispersão, potencial zeta adequadamente negativo (~|30| mV), drug loading de ClAlPc entre 76-94% (com pequena redução após 24 meses) e alta eficiência de encapsulação (E.E.). A morfologia arredondada das nanopartículas foi confirmada por microscopia eletrônica de transmissão e de força atômica. A estabilidade das NLS foi de 24 meses. A avaliação da cristalinidade do lipídio revelou a integração da ClAlPc à matriz lipídica da NLS, presença de estruturas polimórficas e grau de cristalinidade adequado, sem alterações após 24 meses. Nos estudos de difusão in vitro, observou-se que ftalocianina encapsulada nas NLS acumulam-se preferencialmente na epiderme e derme do que no estrato córneo, sem traços de permeação do ativo. Foi confirmado o caráter biocompatível das NLS sobre fibroblastos NIH-3T3. A ftalocianina encapsulada nas NLS não foi tóxica na linhagem de melanoma B16-F10 na ausência de luz, porém, apresentou excelente efeito fototóxico (0,75 ?g mL-1 de ClAlPc nanoencapsulada e irradiação entre 0,5 e 2,0 J cm-2), com redução da viabilidade celular de 87%. O segundo sistema de veiculação estudado foram as vesículas cataniônicas (VesCat), que se formam espontaneamente em água com o tensoativo TriCat 12. A obtenção das vesículas contendo ClAlPc envolve uma etapa adicional, para remoção de solvente orgânico, que foi aprimorada, reduzindo o tempo de produção em 55%. As VesCat/ClAlPc obtidas mantiveram suas propriedades físico-químicas e morfologia arredondada (confirmada por microscopia eletrônica de varredura), drug loading de 47% e alta E.E. Os resultados comprovaram que a aplicação desses dois sistemas nanométricos é altamente eficiente para aplicação da TFD no tratamento do câncer de pele do tipo melanoma ou outras doenças cutâneas, apresentando características favoráveis para avanços nos estudos de fase clínica e pré-clínica.